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Context

•Timber: a pure and higher-
order call-by-value language

•Program optimization is our 
goal

•We care about preserving 
semantics
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app xs ys = case xs of {[] -> ys; (x:xs) -> x:app xs ys}
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T[case app xs ys of 
[] -> zs
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T[(\x.y) e] = y



e =

4.2. RESULTS 47

The transformed result:

root args = show (h1 nodrive1 nodrive2)
where

nodrive1 :: [Int ]
nodrive1 = replicate (str2int (getArg 1 args)) 3
nodrive2 :: [Int ]
nodrive2 = replicate (str2int (getArg 1 args)) 5

h1 xs ys = case xs of
(x ′ : xs ′) → case ys of

(y ′ : ys ′) → (x ′ ∗ y ′) + (h1 xs ′ ys ′)
→ 0

→ 0

The total runtime, the number of allocations, the total size of allocations and the binary size
are all decreased.

Σ
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CBN:

CBV:

T[(\x.y) e] = y

Modify CBN algorithm to 
transform arguments first?
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N[app (app xs ys) zs] =
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N[app (app xs ys) zs] = case xs of
                     [] -> h1 ys zs
                     (x:xs) -> h1 (h2 x xs ys) zs

h1 xs ys = case xs of {[] -> ys; (x:xs) -> x:h1 xs ys}
h2 x xs ys = x:case xs of {[] -> ys; (x:xs) -> h2 x xs ys}
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D[app (app xs ys) zs] = h3 xs ys zs
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h4 xs ys = case xs of {[] -> ys; (x:xs) -> x:h4 xs ys}



D[app (app xs ys) zs] = h3 xs ys zs

h3 xs ys zs = case xs of 
        [] -> case ys of
                   [] -> zs
                   (y:ys) -> y:h4 ys zs
        (x:xs) -> x:h3 xs ys zs

h4 xs ys = case xs of {[] -> ys; (x:xs) -> x:h4 xs ys}



E ::= [] | E es | case E of alts

D[x]  = x
D[k es] = k D[es]
D[E<(\xs.e) es>] = D[E<let xs = es in e>]
D[E<let x = e in f>] = D[E<[e/x]f>] if x   strict(f) 
                                                     and x   linear(f)
                              = let x = D[e] in D[E<f>]
D[E<case x of {ki xi -> ei}>] 
            = case x of {ki xi -> D[[ki xi/x]E<ei>]}
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Figure 5. Driving algorithm

(rule R4). On the other hand - if the application occurs at the
head of a case expression, we may choose a branch on basis of
the constructor and leave the arguments unevaluated in the hope of
finding fold opportunities further down the syntax tree (rule R17).

The argumentation is analogous for lambda abstractions: if there
is a surrounding context we perform a beta reduction, otherwise we
drive its body.

Notice that the primitive operations ranged over by ⊕ can not
be unfolded and transformed like ordinary functions can. If the
arguments of a primitive operation are annoying our algorithm will
simply leave the primitive operation in place (rule R8).

If we had a perfect strictness analysis and could decide whether
an arbitrary expression will terminate or not, the only difference
in results between our algorithm and a call-by-name counterpart
would be for the non-terminating cases. In practice, we have to
settle for an approximation, such as the simple analysis defined
in Figure 6. One may speculate whether the transformations thus
missed will have adverse effects on the usefulness of our algorithm
in practice. We believe we have seen clear indications that this is
not the case, and that crucial factor instead is the ability to inline
function bodies irrespective of whether arguments are values or not.

Our algorithm always inlines functions unless the algorithm de-
tects a risk of non-termination. Avoiding to inline an expression
that could be inlined will give semantically equivalent, but syntac-
tically different output from our algorithm. When the two programs
are executed on a modern processor they will also most likely per-
form differently. Supero (Mitchell and Runciman 2008, Sec. 3.2)
has a more advanced inlining strategy, something we leave for fu-
ture work to investigate.

4.1 Application Rule
In the driving algorithm rule R3 and rule R9 refer to Dapp( ),
defined in Figure 7. Dapp( ) can be inlined in the definition of the
driving algorithm, it is merely given a separate name for improved
clarity of the presentation.

Figure 7 contains some new notation: we use ≡ to denote
equality of two expressions up to renaming of variables and ==
for syntactical equivalence of expressions.

GEN(e1, e2) = (θt, used ∪ (
S

used′))
where (tg, θ′1, θ

′
2) = msg(e1, e2), (t′, σ) = split e1

used′ = {u |( , u) ∈ S}, θ = {e |(e, ) ∈ S}
(t, used) = D!tg"[],G,ρ, if tg (= x

D!t′"[],G,ρ, otherwise
S = D!θ′1"[],G,ρ, if tg (= x

D!σ"[],G,ρ, otherwise

Figure 8. Generalization

Care needs to be taken to ensure that recursive functions are not
inlined forever. The driving algorithm keeps a record of previously
seen applications in the memoization list ρ; whenever it detects an
expression that is equivalent (up to renaming of variables) to a pre-
vious expression, the algorithm creates a new recursive function hn

for some n. Whenever such an expression is encountered again, a
call to hn is inserted. This is not sufficient to guarantee termination
of the algorithm, but the mechanism is crucial for the complexity
improvements mentioned in Section 2.

To ensure termination, we use the homeomorphic embedding
relation ! to define a predicate called “the whistle”. When the
predicate holds for an expression we say that the whistle blows
on that expression. The intuition is that when e ! f , f contains all
subexpressions of e, possibly embedded in other expressions. For
any infinite sequence e0, e1, . . . there exists i and j such that i < j
and ei ! ej . This condition is sufficient to ensure termination.

In order to define the homeomorphic embedding we need a
definition of uniform terms analogous to the work by Sørensen and
Glück (1995), which we adjust slightly to fit our language.

Definition 4.1 (Uniform terms). Let s range over the set N ∪X ∪
K ∪ {caseof , let, letrec, primop, lambda,apply}, and let
caseof(e), let(e), letrec(v, e),primop(e), lambda(e), and
apply(e) denote a case, let, recursive let, primitive operation,
lambda abstraction or application for all subexpressions e, e and
v. The set of terms T is the smallest set of arity respecting symbol
applications s(e).
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relation ! to define a predicate called “the whistle”. When the
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any infinite sequence e0, e1, . . . there exists i and j such that i < j
and ei ! ej . This condition is sufficient to ensure termination.

In order to define the homeomorphic embedding we need a
definition of uniform terms analogous to the work by Sørensen and
Glück (1995), which we adjust slightly to fit our language.

Definition 4.1 (Uniform terms). Let s range over the set N ∪X ∪
K ∪ {caseof , let, letrec, primop, lambda,apply}, and let
caseof(e), let(e), letrec(v, e),primop(e), lambda(e), and
apply(e) denote a case, let, recursive let, primitive operation,
lambda abstraction or application for all subexpressions e, e and
v. The set of terms T is the smallest set of arity respecting symbol
applications s(e).

÷

(Almost) Follow Sørensen et al. (1996)

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/S=oslash=rensen:Morten_Heine.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/S=oslash=rensen:Morten_Heine.html
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(rule R4). On the other hand - if the application occurs at the
head of a case expression, we may choose a branch on basis of
the constructor and leave the arguments unevaluated in the hope of
finding fold opportunities further down the syntax tree (rule R17).

The argumentation is analogous for lambda abstractions: if there
is a surrounding context we perform a beta reduction, otherwise we
drive its body.

Notice that the primitive operations ranged over by ⊕ can not
be unfolded and transformed like ordinary functions can. If the
arguments of a primitive operation are annoying our algorithm will
simply leave the primitive operation in place (rule R8).

If we had a perfect strictness analysis and could decide whether
an arbitrary expression will terminate or not, the only difference
in results between our algorithm and a call-by-name counterpart
would be for the non-terminating cases. In practice, we have to
settle for an approximation, such as the simple analysis defined
in Figure 6. One may speculate whether the transformations thus
missed will have adverse effects on the usefulness of our algorithm
in practice. We believe we have seen clear indications that this is
not the case, and that crucial factor instead is the ability to inline
function bodies irrespective of whether arguments are values or not.

Our algorithm always inlines functions unless the algorithm de-
tects a risk of non-termination. Avoiding to inline an expression
that could be inlined will give semantically equivalent, but syntac-
tically different output from our algorithm. When the two programs
are executed on a modern processor they will also most likely per-
form differently. Supero (Mitchell and Runciman 2008, Sec. 3.2)
has a more advanced inlining strategy, something we leave for fu-
ture work to investigate.

4.1 Application Rule
In the driving algorithm rule R3 and rule R9 refer to Dapp( ),
defined in Figure 7. Dapp( ) can be inlined in the definition of the
driving algorithm, it is merely given a separate name for improved
clarity of the presentation.

Figure 7 contains some new notation: we use ≡ to denote
equality of two expressions up to renaming of variables and ==
for syntactical equivalence of expressions.
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Care needs to be taken to ensure that recursive functions are not
inlined forever. The driving algorithm keeps a record of previously
seen applications in the memoization list ρ; whenever it detects an
expression that is equivalent (up to renaming of variables) to a pre-
vious expression, the algorithm creates a new recursive function hn

for some n. Whenever such an expression is encountered again, a
call to hn is inserted. This is not sufficient to guarantee termination
of the algorithm, but the mechanism is crucial for the complexity
improvements mentioned in Section 2.

To ensure termination, we use the homeomorphic embedding
relation ! to define a predicate called “the whistle”. When the
predicate holds for an expression we say that the whistle blows
on that expression. The intuition is that when e ! f , f contains all
subexpressions of e, possibly embedded in other expressions. For
any infinite sequence e0, e1, . . . there exists i and j such that i < j
and ei ! ej . This condition is sufficient to ensure termination.
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let x = D!e"[],G,ρ inD!R〈f〉"[],G,ρ, otherwise
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(rule R4). On the other hand - if the application occurs at the
head of a case expression, we may choose a branch on basis of
the constructor and leave the arguments unevaluated in the hope of
finding fold opportunities further down the syntax tree (rule R17).

The argumentation is analogous for lambda abstractions: if there
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Notice that the primitive operations ranged over by ⊕ can not
be unfolded and transformed like ordinary functions can. If the
arguments of a primitive operation are annoying our algorithm will
simply leave the primitive operation in place (rule R8).

If we had a perfect strictness analysis and could decide whether
an arbitrary expression will terminate or not, the only difference
in results between our algorithm and a call-by-name counterpart
would be for the non-terminating cases. In practice, we have to
settle for an approximation, such as the simple analysis defined
in Figure 6. One may speculate whether the transformations thus
missed will have adverse effects on the usefulness of our algorithm
in practice. We believe we have seen clear indications that this is
not the case, and that crucial factor instead is the ability to inline
function bodies irrespective of whether arguments are values or not.

Our algorithm always inlines functions unless the algorithm de-
tects a risk of non-termination. Avoiding to inline an expression
that could be inlined will give semantically equivalent, but syntac-
tically different output from our algorithm. When the two programs
are executed on a modern processor they will also most likely per-
form differently. Supero (Mitchell and Runciman 2008, Sec. 3.2)
has a more advanced inlining strategy, something we leave for fu-
ture work to investigate.

4.1 Application Rule
In the driving algorithm rule R3 and rule R9 refer to Dapp( ),
defined in Figure 7. Dapp( ) can be inlined in the definition of the
driving algorithm, it is merely given a separate name for improved
clarity of the presentation.

Figure 7 contains some new notation: we use ≡ to denote
equality of two expressions up to renaming of variables and ==
for syntactical equivalence of expressions.
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Figure 8. Generalization

Care needs to be taken to ensure that recursive functions are not
inlined forever. The driving algorithm keeps a record of previously
seen applications in the memoization list ρ; whenever it detects an
expression that is equivalent (up to renaming of variables) to a pre-
vious expression, the algorithm creates a new recursive function hn

for some n. Whenever such an expression is encountered again, a
call to hn is inserted. This is not sufficient to guarantee termination
of the algorithm, but the mechanism is crucial for the complexity
improvements mentioned in Section 2.

To ensure termination, we use the homeomorphic embedding
relation ! to define a predicate called “the whistle”. When the
predicate holds for an expression we say that the whistle blows
on that expression. The intuition is that when e ! f , f contains all
subexpressions of e, possibly embedded in other expressions. For
any infinite sequence e0, e1, . . . there exists i and j such that i < j
and ei ! ej . This condition is sufficient to ensure termination.

In order to define the homeomorphic embedding we need a
definition of uniform terms analogous to the work by Sørensen and
Glück (1995), which we adjust slightly to fit our language.

Definition 4.1 (Uniform terms). Let s range over the set N ∪X ∪
K ∪ {caseof , let, letrec, primop, lambda,apply}, and let
caseof(e), let(e), letrec(v, e),primop(e), lambda(e), and
apply(e) denote a case, let, recursive let, primitive operation,
lambda abstraction or application for all subexpressions e, e and
v. The set of terms T is the smallest set of arity respecting symbol
applications s(e).
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(rule R4). On the other hand - if the application occurs at the
head of a case expression, we may choose a branch on basis of
the constructor and leave the arguments unevaluated in the hope of
finding fold opportunities further down the syntax tree (rule R17).

The argumentation is analogous for lambda abstractions: if there
is a surrounding context we perform a beta reduction, otherwise we
drive its body.

Notice that the primitive operations ranged over by ⊕ can not
be unfolded and transformed like ordinary functions can. If the
arguments of a primitive operation are annoying our algorithm will
simply leave the primitive operation in place (rule R8).

If we had a perfect strictness analysis and could decide whether
an arbitrary expression will terminate or not, the only difference
in results between our algorithm and a call-by-name counterpart
would be for the non-terminating cases. In practice, we have to
settle for an approximation, such as the simple analysis defined
in Figure 6. One may speculate whether the transformations thus
missed will have adverse effects on the usefulness of our algorithm
in practice. We believe we have seen clear indications that this is
not the case, and that crucial factor instead is the ability to inline
function bodies irrespective of whether arguments are values or not.

Our algorithm always inlines functions unless the algorithm de-
tects a risk of non-termination. Avoiding to inline an expression
that could be inlined will give semantically equivalent, but syntac-
tically different output from our algorithm. When the two programs
are executed on a modern processor they will also most likely per-
form differently. Supero (Mitchell and Runciman 2008, Sec. 3.2)
has a more advanced inlining strategy, something we leave for fu-
ture work to investigate.

4.1 Application Rule
In the driving algorithm rule R3 and rule R9 refer to Dapp( ),
defined in Figure 7. Dapp( ) can be inlined in the definition of the
driving algorithm, it is merely given a separate name for improved
clarity of the presentation.

Figure 7 contains some new notation: we use ≡ to denote
equality of two expressions up to renaming of variables and ==
for syntactical equivalence of expressions.
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Care needs to be taken to ensure that recursive functions are not
inlined forever. The driving algorithm keeps a record of previously
seen applications in the memoization list ρ; whenever it detects an
expression that is equivalent (up to renaming of variables) to a pre-
vious expression, the algorithm creates a new recursive function hn

for some n. Whenever such an expression is encountered again, a
call to hn is inserted. This is not sufficient to guarantee termination
of the algorithm, but the mechanism is crucial for the complexity
improvements mentioned in Section 2.

To ensure termination, we use the homeomorphic embedding
relation ! to define a predicate called “the whistle”. When the
predicate holds for an expression we say that the whistle blows
on that expression. The intuition is that when e ! f , f contains all
subexpressions of e, possibly embedded in other expressions. For
any infinite sequence e0, e1, . . . there exists i and j such that i < j
and ei ! ej . This condition is sufficient to ensure termination.

In order to define the homeomorphic embedding we need a
definition of uniform terms analogous to the work by Sørensen and
Glück (1995), which we adjust slightly to fit our language.
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(rule R4). On the other hand - if the application occurs at the
head of a case expression, we may choose a branch on basis of
the constructor and leave the arguments unevaluated in the hope of
finding fold opportunities further down the syntax tree (rule R17).

The argumentation is analogous for lambda abstractions: if there
is a surrounding context we perform a beta reduction, otherwise we
drive its body.

Notice that the primitive operations ranged over by ⊕ can not
be unfolded and transformed like ordinary functions can. If the
arguments of a primitive operation are annoying our algorithm will
simply leave the primitive operation in place (rule R8).

If we had a perfect strictness analysis and could decide whether
an arbitrary expression will terminate or not, the only difference
in results between our algorithm and a call-by-name counterpart
would be for the non-terminating cases. In practice, we have to
settle for an approximation, such as the simple analysis defined
in Figure 6. One may speculate whether the transformations thus
missed will have adverse effects on the usefulness of our algorithm
in practice. We believe we have seen clear indications that this is
not the case, and that crucial factor instead is the ability to inline
function bodies irrespective of whether arguments are values or not.

Our algorithm always inlines functions unless the algorithm de-
tects a risk of non-termination. Avoiding to inline an expression
that could be inlined will give semantically equivalent, but syntac-
tically different output from our algorithm. When the two programs
are executed on a modern processor they will also most likely per-
form differently. Supero (Mitchell and Runciman 2008, Sec. 3.2)
has a more advanced inlining strategy, something we leave for fu-
ture work to investigate.
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In the driving algorithm rule R3 and rule R9 refer to Dapp( ),
defined in Figure 7. Dapp( ) can be inlined in the definition of the
driving algorithm, it is merely given a separate name for improved
clarity of the presentation.

Figure 7 contains some new notation: we use ≡ to denote
equality of two expressions up to renaming of variables and ==
for syntactical equivalence of expressions.
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Care needs to be taken to ensure that recursive functions are not
inlined forever. The driving algorithm keeps a record of previously
seen applications in the memoization list ρ; whenever it detects an
expression that is equivalent (up to renaming of variables) to a pre-
vious expression, the algorithm creates a new recursive function hn

for some n. Whenever such an expression is encountered again, a
call to hn is inserted. This is not sufficient to guarantee termination
of the algorithm, but the mechanism is crucial for the complexity
improvements mentioned in Section 2.

To ensure termination, we use the homeomorphic embedding
relation ! to define a predicate called “the whistle”. When the
predicate holds for an expression we say that the whistle blows
on that expression. The intuition is that when e ! f , f contains all
subexpressions of e, possibly embedded in other expressions. For
any infinite sequence e0, e1, . . . there exists i and j such that i < j
and ei ! ej . This condition is sufficient to ensure termination.

In order to define the homeomorphic embedding we need a
definition of uniform terms analogous to the work by Sørensen and
Glück (1995), which we adjust slightly to fit our language.

Definition 4.1 (Uniform terms). Let s range over the set N ∪X ∪
K ∪ {caseof , let, letrec, primop, lambda,apply}, and let
caseof(e), let(e), letrec(v, e),primop(e), lambda(e), and
apply(e) denote a case, let, recursive let, primitive operation,
lambda abstraction or application for all subexpressions e, e and
v. The set of terms T is the smallest set of arity respecting symbol
applications s(e).
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D[let ys = map g ys’ 
   in case map f xs’ of
           [] -> []

(x’:xs’) -> case ys of
                   [] -> []
                   (y’:ys’) -> (x’, y’):zip xs’ ys’]



CBV-supercompilation is weaker 
than CBN-supercompilation

D[zip (map f xs’) (map g ys’)] =

D[let ys = map g ys’ 
   in case map f xs’ of
           [] -> []

(x’:xs’) -> case ys of
                   [] -> []
                   (y’:ys’) -> (x’, y’):zip xs’ ys’]



Propagate Let-expressions
D[let ys = map g ys’ 
   in case (case xs’ of
                  [] -> []
                  (x’’:xs’’) -> f x’’:map f xs’’) of
           [] -> []

(x’:xs’) -> case ys of
                   [] -> []
                   (y’:ys’) -> (x’, y’):zip xs’ ys’]



 case xs of
     [] -> D[let ys = map g ys’ 
               in case [] of
                    [] -> []

         (x’:xs’) -> case ys of
                         [] -> []
                         (y’:ys’) -> (x’, y’):zip xs’ ys’]

      (x’’:xs’’) -> D[let ys = map g ys’ 
                        in case f x’’:map f xs’’ of
                             [] -> []

                 (x’:xs’) -> case ys of
                                  [] -> []
                                  (y’:ys’) -> (x’, y’):zip xs’ ys’] 



D[zip (map f xs’) (map g ys’)] = h5 f xs’ g ys’

h5 f xs’ g ys’ = 
      case xs’ of
          [] -> let ys = map g ys’ in []
          (z:zs) -> case ys’ of

          [] -> let x’ = f z, xs’ = map f zs in []
          (z’:zs’) -> (f z, g z’):h5 f zs g zs’



h5 f xs’ g ys’ = 
      case xs’ of
          [] -> let ys = map g ys’ in []
          (z:zs) -> case ys’ of

          [] -> let x’ = f z, xs’ = map f zs in []
          (z’:zs’) -> (f z, g z’):h5 f zs g zs’

The Case for Termination 
Analysis



D[E<let x = e in f>] B 
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                                                           and x   linear(f)
                     = D[E<f>] (B U (x, e))

D!n"R,G,ρ = R〈n〉 (R1)
D!x"R,G,ρ = R〈x〉 (R2)
D!g"R,G,ρ = Dapp(g, )R,G,ρ (R3)
D!k e"[],G,ρ = kD!e"[],G,ρ (R4)
D!x e"R,G,ρ = R〈xD!e"[],G,ρ〉 (R5)
D!λx.e"[],G,ρ = (λx.D!e"[],G,ρ) (R6)
D!n1 ⊕ n2"R,G,ρ = D!R〈n〉"[],G,ρ, where n = n1 + n2 (R7)
D!e1 ⊕ e2"R,G,ρ = D!e1"[],G,ρ ⊕D!e2"[],G,ρ, if e1 ⊕ e2 = a (R8)

D!e2"R〈e1⊕[]〉,G,ρ, if e1 = n or e1 = a
D!e1"R〈[]⊕e2〉,G,ρ, otherwise
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D!(λx.f) e"R,G,ρ = D!let x = e in f"R,G,ρ (R10)
D!e e"R,G,ρ = D!e"R〈[] e〉,G,ρ (R11)
D!let x = v in f"R,G,ρ = D!R〈[v/x]f〉"[],G,ρ (R12)
D!let x = y in f"R,G,ρ = D!R〈[y/x]f〉"[],G,ρ (R13)
D!let x = e in f"R,G,ρ = D!R〈[e/x]f〉"[],G,ρ, if x ∈ strict(f) and f linear w.r.t x (R14)

let x = D!e"[],G,ρ inD!R〈f〉"[],G,ρ, otherwise
D!letrec g = v in e"R,G,ρ = D!R〈e〉"[],G′,ρ, where G′ = G ∪ (g, v) (R15)
D!case x of {pi → ei}"R,G,ρ = case x of {pi → D!R〈[pi/x]ei〉"[],G,ρ} (R16)
D!case kj e of {ki xi → ei}"R,G,ρ = D!let xj = e in ej"R,G,ρ (R17)
D!case nj of {ni → ei}"R,G,ρ = D!R〈ej〉"[],G,ρ (R18)
D!case a of {pi → ei}"R,G,ρ = caseD!a"[],G,ρ of {pi → D!R〈ei〉"[],G,ρ} (R19)
D!case e of {pi → ei}"R,G,ρ = D!e"R〈case []of {pi→ei}〉,G,ρ (R20)

Figure 5. Driving algorithm

(rule R4). On the other hand - if the application occurs at the
head of a case expression, we may choose a branch on basis of
the constructor and leave the arguments unevaluated in the hope of
finding fold opportunities further down the syntax tree (rule R17).

The argumentation is analogous for lambda abstractions: if there
is a surrounding context we perform a beta reduction, otherwise we
drive its body.

Notice that the primitive operations ranged over by ⊕ can not
be unfolded and transformed like ordinary functions can. If the
arguments of a primitive operation are annoying our algorithm will
simply leave the primitive operation in place (rule R8).

If we had a perfect strictness analysis and could decide whether
an arbitrary expression will terminate or not, the only difference
in results between our algorithm and a call-by-name counterpart
would be for the non-terminating cases. In practice, we have to
settle for an approximation, such as the simple analysis defined
in Figure 6. One may speculate whether the transformations thus
missed will have adverse effects on the usefulness of our algorithm
in practice. We believe we have seen clear indications that this is
not the case, and that crucial factor instead is the ability to inline
function bodies irrespective of whether arguments are values or not.

Our algorithm always inlines functions unless the algorithm de-
tects a risk of non-termination. Avoiding to inline an expression
that could be inlined will give semantically equivalent, but syntac-
tically different output from our algorithm. When the two programs
are executed on a modern processor they will also most likely per-
form differently. Supero (Mitchell and Runciman 2008, Sec. 3.2)
has a more advanced inlining strategy, something we leave for fu-
ture work to investigate.

4.1 Application Rule
In the driving algorithm rule R3 and rule R9 refer to Dapp( ),
defined in Figure 7. Dapp( ) can be inlined in the definition of the
driving algorithm, it is merely given a separate name for improved
clarity of the presentation.

Figure 7 contains some new notation: we use ≡ to denote
equality of two expressions up to renaming of variables and ==
for syntactical equivalence of expressions.

GEN(e1, e2) = (θt, used ∪ (
S

used′))
where (tg, θ′1, θ

′
2) = msg(e1, e2), (t′, σ) = split e1

used′ = {u |( , u) ∈ S}, θ = {e |(e, ) ∈ S}
(t, used) = D!tg"[],G,ρ, if tg (= x

D!t′"[],G,ρ, otherwise
S = D!θ′1"[],G,ρ, if tg (= x

D!σ"[],G,ρ, otherwise

Figure 8. Generalization

Care needs to be taken to ensure that recursive functions are not
inlined forever. The driving algorithm keeps a record of previously
seen applications in the memoization list ρ; whenever it detects an
expression that is equivalent (up to renaming of variables) to a pre-
vious expression, the algorithm creates a new recursive function hn

for some n. Whenever such an expression is encountered again, a
call to hn is inserted. This is not sufficient to guarantee termination
of the algorithm, but the mechanism is crucial for the complexity
improvements mentioned in Section 2.

To ensure termination, we use the homeomorphic embedding
relation ! to define a predicate called “the whistle”. When the
predicate holds for an expression we say that the whistle blows
on that expression. The intuition is that when e ! f , f contains all
subexpressions of e, possibly embedded in other expressions. For
any infinite sequence e0, e1, . . . there exists i and j such that i < j
and ei ! ej . This condition is sufficient to ensure termination.

In order to define the homeomorphic embedding we need a
definition of uniform terms analogous to the work by Sørensen and
Glück (1995), which we adjust slightly to fit our language.

Definition 4.1 (Uniform terms). Let s range over the set N ∪X ∪
K ∪ {caseof , let, letrec, primop, lambda,apply}, and let
caseof(e), let(e), letrec(v, e),primop(e), lambda(e), and
apply(e) denote a case, let, recursive let, primitive operation,
lambda abstraction or application for all subexpressions e, e and
v. The set of terms T is the smallest set of arity respecting symbol
applications s(e).
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be unfolded and transformed like ordinary functions can. If the
arguments of a primitive operation are annoying our algorithm will
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in results between our algorithm and a call-by-name counterpart
would be for the non-terminating cases. In practice, we have to
settle for an approximation, such as the simple analysis defined
in Figure 6. One may speculate whether the transformations thus
missed will have adverse effects on the usefulness of our algorithm
in practice. We believe we have seen clear indications that this is
not the case, and that crucial factor instead is the ability to inline
function bodies irrespective of whether arguments are values or not.

Our algorithm always inlines functions unless the algorithm de-
tects a risk of non-termination. Avoiding to inline an expression
that could be inlined will give semantically equivalent, but syntac-
tically different output from our algorithm. When the two programs
are executed on a modern processor they will also most likely per-
form differently. Supero (Mitchell and Runciman 2008, Sec. 3.2)
has a more advanced inlining strategy, something we leave for fu-
ture work to investigate.
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defined in Figure 7. Dapp( ) can be inlined in the definition of the
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Care needs to be taken to ensure that recursive functions are not
inlined forever. The driving algorithm keeps a record of previously
seen applications in the memoization list ρ; whenever it detects an
expression that is equivalent (up to renaming of variables) to a pre-
vious expression, the algorithm creates a new recursive function hn

for some n. Whenever such an expression is encountered again, a
call to hn is inserted. This is not sufficient to guarantee termination
of the algorithm, but the mechanism is crucial for the complexity
improvements mentioned in Section 2.

To ensure termination, we use the homeomorphic embedding
relation ! to define a predicate called “the whistle”. When the
predicate holds for an expression we say that the whistle blows
on that expression. The intuition is that when e ! f , f contains all
subexpressions of e, possibly embedded in other expressions. For
any infinite sequence e0, e1, . . . there exists i and j such that i < j
and ei ! ej . This condition is sufficient to ensure termination.

In order to define the homeomorphic embedding we need a
definition of uniform terms analogous to the work by Sørensen and
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(rule R4). On the other hand - if the application occurs at the
head of a case expression, we may choose a branch on basis of
the constructor and leave the arguments unevaluated in the hope of
finding fold opportunities further down the syntax tree (rule R17).

The argumentation is analogous for lambda abstractions: if there
is a surrounding context we perform a beta reduction, otherwise we
drive its body.

Notice that the primitive operations ranged over by ⊕ can not
be unfolded and transformed like ordinary functions can. If the
arguments of a primitive operation are annoying our algorithm will
simply leave the primitive operation in place (rule R8).

If we had a perfect strictness analysis and could decide whether
an arbitrary expression will terminate or not, the only difference
in results between our algorithm and a call-by-name counterpart
would be for the non-terminating cases. In practice, we have to
settle for an approximation, such as the simple analysis defined
in Figure 6. One may speculate whether the transformations thus
missed will have adverse effects on the usefulness of our algorithm
in practice. We believe we have seen clear indications that this is
not the case, and that crucial factor instead is the ability to inline
function bodies irrespective of whether arguments are values or not.

Our algorithm always inlines functions unless the algorithm de-
tects a risk of non-termination. Avoiding to inline an expression
that could be inlined will give semantically equivalent, but syntac-
tically different output from our algorithm. When the two programs
are executed on a modern processor they will also most likely per-
form differently. Supero (Mitchell and Runciman 2008, Sec. 3.2)
has a more advanced inlining strategy, something we leave for fu-
ture work to investigate.

4.1 Application Rule
In the driving algorithm rule R3 and rule R9 refer to Dapp( ),
defined in Figure 7. Dapp( ) can be inlined in the definition of the
driving algorithm, it is merely given a separate name for improved
clarity of the presentation.

Figure 7 contains some new notation: we use ≡ to denote
equality of two expressions up to renaming of variables and ==
for syntactical equivalence of expressions.
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(t, used) = D!tg"[],G,ρ, if tg (= x

D!t′"[],G,ρ, otherwise
S = D!θ′1"[],G,ρ, if tg (= x

D!σ"[],G,ρ, otherwise

Figure 8. Generalization

Care needs to be taken to ensure that recursive functions are not
inlined forever. The driving algorithm keeps a record of previously
seen applications in the memoization list ρ; whenever it detects an
expression that is equivalent (up to renaming of variables) to a pre-
vious expression, the algorithm creates a new recursive function hn

for some n. Whenever such an expression is encountered again, a
call to hn is inserted. This is not sufficient to guarantee termination
of the algorithm, but the mechanism is crucial for the complexity
improvements mentioned in Section 2.

To ensure termination, we use the homeomorphic embedding
relation ! to define a predicate called “the whistle”. When the
predicate holds for an expression we say that the whistle blows
on that expression. The intuition is that when e ! f , f contains all
subexpressions of e, possibly embedded in other expressions. For
any infinite sequence e0, e1, . . . there exists i and j such that i < j
and ei ! ej . This condition is sufficient to ensure termination.

In order to define the homeomorphic embedding we need a
definition of uniform terms analogous to the work by Sørensen and
Glück (1995), which we adjust slightly to fit our language.

Definition 4.1 (Uniform terms). Let s range over the set N ∪X ∪
K ∪ {caseof , let, letrec, primop, lambda,apply}, and let
caseof(e), let(e), letrec(v, e),primop(e), lambda(e), and
apply(e) denote a case, let, recursive let, primitive operation,
lambda abstraction or application for all subexpressions e, e and
v. The set of terms T is the smallest set of arity respecting symbol
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Future Work

•More measurements on real 
programs

•Investigate cheaper methods for 
ensuring termination

•What about accumulating 
parameters?



Related Work

• Supercompilers:

•Scp4 (Nemytykh 2003)

•Mitchell (2008, 2010)

•Bolingbroke & Peyton Jones 
(2010)

• Reich et al. (2010)



Conclusions

Supercompilation for call-by-
value languages: 
•can be strengthened to close in 
on call-by-name supercompilers


