Strengthening
Supercompilation

for Call-By-Value
Languages

Peter A. Jonsson Johan Nordlander
Lulea University of Technology

Background

Context

*Timber: a pure and higher-
order call-by-value language

*Program optimization is our
goal

* We care about preserving
semantics

Wadler's algorithm

Tlapp (app xs ys) zs] =

app xs ys = case xs of {[] ->ys; (x:xs) -> x:app xs ys}

Wadler's algorithm

Tlapp (app xs ys) zs] =

T[case app xs ys of
[]->zs
(x:xs) -> x:app Xxs zs]

app xs ys = case xs of {[] ->ys; (x:xs) -> x:app xs ys}

T[(\x.y)e]=y

CBN:
CBV:

TI(\x.y)el=y

(\x.y) L >y

(\xy) | ->(\xy) | ->..

e= |

T[(\x.y)e]=y e=|

CBiw

Modify CBN algorithm to
transform argumenTs first?

CBV:

(WY L

(\xy) | ->(\xy) | ->..

Naive algorithm

N[app (app xs ys) zs] =

app xs ys = case xs of {[] ->ys; (x:xs) -> x:app xs ys}

Naive algorithm

N[app (app xs ys) zs] =
N[app (case xs of {[] -> ys. (x:xs) -> x:app XS ys}) zs] =

app xs ys = case xs of {[] ->ys; (x:xs) -> x:app xs ys}

Naive algorithm

N[app (app xs ys) zs] =
N[app (case xs of {[]->ys: (x:xs) -> x:app XS ys}) zs] =
case xs of

[1->Nlapp (ys) zs]
(x:xs) -> N[app (x:app xs ys) zs]

app xs ys = case xs of {[] ->ys; (x:xs) -> x:app xs ys}

app (app xs ys) zs

app (x:app xs ys) zs

app (app xs ys) zs

<

app (x:app xs ys) zs

N[app (app xs ys) zs] = case xs of
[]->hlys zs
(x:xs) -> hl (h2 x xs ys) zs

hl xs ys = case xs of {[] ->ys. (x:xs) -> x:hl xs ys}
h2 x xs ys = x:case xs of {[] -> ys; (x:xs) -> h2 x xs ys}

N[app (app xs ys) zs] = case xs of (
[]->hlys zs

(x:xs) -> hl (h2 x xs ys) zs

hl xs ys = case xs of {[] ->ys. (x:xs) -> x:hl xs ys}
h2 x xs ys = x:case xs of {[] ->ys: (x:xs) -> h2 x xs ys}

Our algorithm
Dlapp (app xs ys) zs] =

app xs ys = case xs of {[] ->ys; (x:xs) -> x:app xs ys}

Our algorithm
Dlapp (app xs ys) zs] =

D[let xs = app xs ys, ys = zs in case xs of

[1->ys
(x:xs) -> x:app xs ys]

app xs ys = case xs of {[] ->ys; (x:xs) -> x:app xs ys}

Our algorithm
Dlapp (app xs ys) zs] =

D[let xs = app xs ys, ys = zs in case xs of

[1->ys
(x:xs) -> x:app xs ys]

app xs ys = case xs of {[] ->ys; (x:xs) -> x:app xs ys}

Our algorithm
Dlapp (app xs ys) zs] =

D[let xs = app xs ys, ys = zs in case xs of

[1->ys
(x:xs) -> x:app xs ys]

D[case app xs ys of
[]->zs
(x:xs) -> x:app Xs zs]

app xs ys = case xs of {[] ->ys; (x:xs) -> x:app xs ys}

Dlapp (app xs ys) zs] = h3 xs ys zs

h3 xs ys zs = case xs of
[]-> case ys of
[]->zs
(y:ys) -> y:h4 ys zs
(x:xs) -> x:h3 xs ys zs
h4 xs ys = case xs of {[]->ys. (x:xs) -> x:h4 xs ys}

Dlapp (app xs ys) zs] = h3 xs ys zs

h3 xs ys zs = case xs of
[]-> case ys of
[]->2zs
(yys) -> ys zs
(x:xs) -> x:h3 xs ys zs
h4 xs ys = case xs of {[]->ys; (x:xs) -> x:h4 xs ys}

(Almost) Follow Serensen et al. (1996)

E:=[]| Ees| case E of alts

T)[x] = 5%
D[k es] = k D[es]
D[E<(\xs.e) es>] = D[E«let xs = es in e>]
D[E<let x = e in f>] = D[E<[e/x]f>] if xEstrict(f)
and x € linear(f)
= let x = D[e] in D[E<f>]

D[E<case x of {ki xi -> ei}>]

= case x of {ki xi -> D[[ki xi/x]E<ei>1}
D[E<case k; es of {ki xi ->ei}>] = D[E<let xj = es in ej>]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/S=oslash=rensen:Morten_Heine.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/S=oslash=rensen:Morten_Heine.html

(Almost) Follow Serensen et al. (1996)

E:=[]| Ees| case E of alts

D[x] = x
D[k es] = k D[es]
|Dﬁ:‘<(_xs.e_) es>] = D[E<let xs=esines]
D[E<let x = e in f>] = D[E<[e/x]f>] if x € strict(f)
| and x € linear(f)
| = let x = D[e] in D[E<f>]
D[E<case x of {ki xi -> e}>]

= case x of {ki x; -> D[[ki xi/x]E<e;i>]}

D[E<case kJ' es of {ki xi -> e }>] = D[E«let Xj=es 11 €j>]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/S=oslash=rensen:Morten_Heine.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/S=oslash=rensen:Morten_Heine.html

(Almost) Follow Serensen et al. (1996)

E:=[]| Ees| case E of alts

D[x] = x
D[k es] = k D[es]
|Dﬁ:’<(_xs.e_) es>] = D[E<let xs=esine>]
D[E<let x = e in f>] = D[E<[e/x]f>] if x € strict(f) |
| and x € linear(f)
| = let x = D[e] in D[E<f>]
D[E<case x of {ki xi -> e}>]

= case x of {ki x; -> D[[ki xi/x]E<e;i>]}

D[E<case kJ' es of {ki xi -> e }>] = D[E«let Xj=es 11 €j>]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/S=oslash=rensen:Morten_Heine.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/S=oslash=rensen:Morten_Heine.html

Runtime

I Before optimization
I After optimization

Sum Square

Double append

0 ticks 100,000,000 ticks 200,000,000 ticks 300,000,000 tick

Memory allocated

I Before optimization
I After optimization

Sum Square _

Double append

0B 10,000,000B 20,000,000B 30,000,000B

But..

CBV -supercompilation is weaker
than CBN-supercompilation

D[zip (map f xs’) (map g ys')] =

CBV -supercompilation is weaker
than CBN-supercompilation

D[zip (map f xs’) (map g ys')] =

Dllet ys = map g ys’
in case map f xs' of

[]->[]

(x':xs') -> case ys of
[]->1]
(y:ys) -> (X, y):zip xs'ys']

CBV -supercompilation is weaker
than CBN-supercompilation

D[zip (map f xs’) (map g ys')] =
Dllet ys = map g ys’
in case map f xs' of

[1-> (] /

(x':xs') -> case ys of
[]->1]
(y:ys) -> (X, y):zip xs'ys']

Propagate Let-expressions

Dllet ys = map g ys
in case (case xs' of
[1->[]
(x":xs") -> f x":map f xs") of
[1->[]
(x':xs") -> case ys of
[1->[]
(y:ys') -> (X', y'):zip xs' ys']

case xs of
[]->Dl[let ys = map g ys’
in case [] of
[1->1]
(x':xs') -> case ys of
[1->1]
(y:ys) -> (X, y):zip xs'ys']
(x":xs") -> D[let ys = map g ys'
in case f x":map f xs" of
[1->1]
(x':xs') -> case ys of
[1->1]
(y:ys) -> (X, y):zip xs'ys']

Dizip (map f xs") (map g ys')] = hb f xs' g ys'

hb f xs' gys' =
case xs' of
[]->letys=mapgys in[]
(z:zs) -> case ys' of
[]->let x' =f z,xs"=map f zs in []
(z:zs')->(f z,9g Z):hD f zs g zs’

The Case for Termination
Analysis

hb f xs' gys' =
case xs' of
[]->letys=mapgys in[]
(z:zs) -> case ys' of
[]->let x' =f z,xs"=map f zs in []
(z:zs')->(f z,9g Z):hD f zs g zs’

Extended Let Rule

D[E<let x = e in f>] B
= D[E<let B in f>] O if terminates(e)
and xZfv(f)
= D[E<let B in [e/x]f>] O if x €strict(f)
and x € linear(f)
= D[E<f>] (B U (x, e))

Future Work

* More measurements on real
programs

*TInvestigate cheaper methods for
ensuring termination

* What about accumulating
parameters?

Related Work

® Supercompilers:
*Scp4 (Nemytykh 2003)
*Mitchell (2008, 2010)

*Bolingbroke & Peyton Jones
(2010)

® Reich et al. (2010)

Conclusions

Supercompilation for call-by-
value languages:

°can be strengthened to close in
on call-by-name supercompilers

