
PROGRAMMING IN BIOMOLECULAR COMPUTATION

Lars Hartmann

Neil D. Jones

Jakob Grue Simonsen

+

Visualization by Søren Bjerregaard Vrist

(All now or recently at the University of Copenhagen)

Conference: META 2010 (July 1, 2010)

Source: June 2010 conference CS2BIO Computer Science to Biology

— 0 —

UNIVERSALITY AND PROGRAMMING IN A

BIOCHEMICAL SETTING

Turing completeness results for biomolecular computation:

I Cardelli, Chapman, Danos, Reif, Shapiro, Wolfram,. . .

I Net effect: any computable function can be computed, in

some sense, by various biological mechanisms.

I Not completely compelling from a programming perspective.

I Our aim: a computation model where

• “program” is clearly visible and natural, and

• Turing completeness is not artificial or accidental, but a

natural part of biomolecular computation

— 1 —

CONNECTIONS EXIST BETWEEN BIOLOGY AND

COMPUTATION, but . . .

WHERE ARE THE PROGRAMS?

Our proposal: a model of computation that is

I biologically plausible: semantics by chemical-like reaction

rules;

I programmable (a bit like low-level computer machine code);

I uniform: new “hardware” not needed to solve new problems;

I stored-program: programs = data;

programs are executable and compilable and interpretable

I universal: all computable functions can be computed

I Turing complete in a strong sense: ∃ a universal algorithm

(able to execute any program, asymptotically efficient)

— 2 —

BUT WHERE ARE THE PROGRAMS?

In existing models of biomolecular computation

it’s hard to see anything like a program that realises or

directs a computational process.

I In cellular automata, “program” is expressed only in the ini-

tial cell configuration, or in the global transition function

I Many examples: given a problem, authors cleverly devise a

biomolecular system that can solve this particular problem

I The algorithm being implemented is hidden in the details of

the system’s construction, hard to see.

Our purpose is to fill this gap,

I to establish a biologically feasible framework in which

I programs are first-class citizens.

— 3 —

OTHER COMPUTATIONAL FRAMEWORKS

Circuits, BDDs, finite automata: Nonuniform, Turing incomplete

Turing machine:

I Pro Visible program; complete; universal machine exists

I Con Asymptotically slow: universal machine takes time

O(n2) to simulate a program running in time O(n)

Other program-based models: Post, Minsky, lisp, ram, rasp. . .

Complex, biologically implausible

Cellular automata: von Neumann, life, Wolfram,. . .

I Pro Can simulate a Turing machine

I Con Complex, biologically implausible (synchronisation!)

There is no natural universal cellular automaton.

It’s very hard to see “the program”.

— 4 —

“DIRECT” PROGRAM EXECUTION

Write [[program]] for the meaning or net effect of running program:

[[program]](datain) = dataout

I program is an active agent.

I It is activated (run) by applying the semantic function [[]].

I Some mechanism is needed to execute program, i.e., to apply

[[]] to program and datain :

hardware (“wetware”?).

— 5 —

THE BIOLOGICAL WORLD IS NOT HARDWARE!

We must re-examine programming language assumptions.

Computers have programmer-friendly conveniences, e.g.,

I A large address space of randomly accessible data

I Pointers to data, perhaps at a great “distance” from the

current program or data

I address arithmetic, index registers,. . .

I Unbounded fan-in: many pointers to the same data item. . .

None of these is biologically plausible!

Workarounds are needed

if we want to do biological programming.

— 6 —

FOR BIOLOGICAL PLAUSIBILITY

I There is no action at a distance: all effects achieved via

chains of local interactions. Biological analog: signaling.

I There are no pointers to data (addresses, links, list point-

ers): To be acted on, a data value must be physically adja-

cent to an actuator. Biological analog: chemical bond

between program and data.

I No nonlocal control transfer, e.g., unbounded GOTOs or

remote procedure calls. Biological analog: a bond

from one part of a program to another.

I A “yes”: ∃ available resources to tap, i.e., energy to change

the program control point, or to add data bonds.

Biological analogs: ATP, oxygen, Brownian movement.

— 7 —

KEEPING THE FOCUS

How to structure a biologically feasible model of computation?

I Idea: keep current program counter and data cursor always

close to a focus point where all actions occur.

I How? Continually shift both program and data, to keep the

active bits near the focus.

Program p Data d'

&

$

%
?

?

'

&

$

%
?

?

*

Running program p: computing [[p]](d)

= Focus point for control and data
(connects the APB and the ADB)

* = program-to-data bond: “the bug”

— 8 —

A MOVIE IS WORTH DURATION×FRAMERATE×1000

WORDS

(largedataplay2.avi)

— 9 —

THE BLOB MODEL

Simplified view of a molecule and chemical interactions (Cardelli,

Danos, Lanève,. . .).

Blobs are in a biological “soup” and are connected by symmet-

rical bonds linking their bond sites.

Picture of a blob:

Bond sites 0, 2 and 3 are bound, and 1 is unbound

4 bond sites and 8 cargo bits
0

1⊥ 2
3

'

&

$

%

— 10 —

PROGRAM BLOBS AND DATA BLOBS

I A program p is (by definition) a connected assembly of blobs.

I A data value d is (also) a connected assembly of blobs.

At any moment during execution, i.e., computation of [[p]](d):

I The active program blob (APB) is in p.

I The active data blob (ADB) is in d.

I There is a bond * (“the bug”) between the APB and the

ADB, at bond sites 0.

— 11 —

BLOB STRUCTURE (AS DATA OR AS PROGRAM)

A blob has 4 bond sites and 8 cargo bits (boolean values).

I A bond site can be: bound to another blob; or ⊥ (unbound).

I 8 cargo bits of local storage.

I When used as program:

• the activation cargo bit = 1.

• the other 7 cargo bits contain an instruction

I When used as data:

• the activation cargo bit = 0;

• the other 7 cargo bits (and 4 bonds): no constraints.

— 12 —

ABOUT INSTRUCTIONS:

Instruction form:
opcode parameters (bond0, bond1, bond2, bond3)

Why exactly 4 bonds?

I Predecessor (1 bond); true and false successors (2 bonds);

I plus one bond to link the APB to the ADB.

It’s almost a von Neumann machine code, but. . .

I A bond is a two-way link between two adjacent blobs.

I A bond is not an address.

I There is no address space as in conventional computer (and

hence: no address decoding hardware).

I Also: no registers (use the cargo bits instead).

— 13 —

INSTRUCTIONS HAVE 8 BITS

Instruction Description Informal semantics (write :=: for a two-way interchange)

SCG v c Set CarGo bit ADB.c := v; APB := APB.2

JCG c Jump CarGo bit if ADB.c = 0 then APB := APB.3 else APB := APB.2

JB b Jump Bond if ADB.b = ⊥ then APB := APB.3 else APB := APB.2

CHD b CHange Data ADB := ADB.b; APB := APB.2

INS b1 b2 INSert new bond ADB-new.b2 :=: ADB.b1; ADB-new.b1 :=: ADB.b1.bs;

— APB := APB.2

SBS b1 b2 SWap Bond Sites ADB.b1 :=: ADB.b2; APB := APB.2

SWL b1 b2 SWap Links ADB.b1 :=: ADB.b2.b1; APB := APB.2

SWP3 b1 b2 Swap bs3 on linked ADB.b1.3 :=: ADB.b2.3; APB := APB.2

FIN Fan IN APB := APB.2 (two predecessors: bond sites 1 and 3)

EXT EXiT program

SCG,. . . ,EXT: Operation codes

b, b1, b2: Bond site numbers

c: Cargo site number

v: A one-bit value

— 14 —

EXAMPLE: EFFECT OF SCG 1 5 (SET CARGO BIT 5 TO 1)

#
"

!APB APB

a
1

#
"

!
⊥

APB′ APB′
a
0

*

�
�
�
�

#
"

!

?
5

ADB ADB

⇒

#
"

!⊥

a
0

#
"

!

a
1

��
�
��
�
��
�
��
�

*�
�
�
�

#
"

!

1
5

Program Data Program Data

I “The bug”
∗

— has moved:

• before execution, it connected APB with ADB.

• After: it connects successor APB′ with ADB.

I Also: activation bits 0, 1 have been swapped.

Instruction syntax: the 8-bit string 11001101 is grouped as

a︷︸︸︷
1

SCG︷︸︸︷
100

v︷︸︸︷
1

c︷︸︸︷
101

— 15 —

SEMANTICS OF SCG 1 5 BY ”SOMETHING LIKE” A

CHEMICAL REACTION RULE

Instruction form:
a︷︸︸︷
1

SCG︷︸︸︷
100

v︷︸︸︷
1

c︷︸︸︷
101

APB︷ ︸︸ ︷
B[1 100 1 101](∗ - - -),

APB′︷ ︸︸ ︷
B[0 - - - - - - -](⊥ - - -),

ADB︷ ︸︸ ︷
B[0 - - - - x - -](∗ - - -)

⇒

B[0 100 1 101](⊥ - - -)︸ ︷︷ ︸
APB

, B[1 - - - - - - -](∗ - - -)︸ ︷︷ ︸
APB′

, B[0 - - - - 1 - -](∗ - - -)︸ ︷︷ ︸
ADB

(- = unchanged bond or cargo bit)

Similar style to: Danos and Laneve, Formal Molecular Biology.

— 16 —

A FURTHER EXAMPLE: APPENDING TWO LISTS

(Example film)

— 17 —

A WAY TO SHOW TURING COMPLETENESS

Language M is as powerful as L (write L ≤M) if

∀p ∈ L−programs ∃q ∈M−programs ([[p]]L = [[q]]M)

L and M are languages (biological, programming, whatever).

Aim: show that an interesting M is Turing complete.

One way: reduce an already Turing complete language , e.g.,

I L = two-counter machines 2CM.

I M = a biomolecular system of the sort being studied.

I The technical trick: show how to construct

• from any 2CM program,

• a biomolecular M -system that simulates the given 2CM.

— 18 —

ANOTHER WAY: SIMULATION BY INTERPRETATION

Turing completeness is usually shown by simulation, e.,g.,

I for any 2CM program you build a biomolecular system such

that . . .

But: the biomolecular system is usually built by hand. The

effect: hand computation of the ∃ quantifier in

∀p∃q([[p]]L = [[q]]M)

In contrast, Turing’s original “Universal machine” (UM) works

by interpretation, where ∃ is realised by machine.

I The UM can execute any TM program, if coded on the UM’s

tape along with its input data.

I Our research follows Turing’s line, in a biological context:

It does simulation by general interpretation, and not by one-

problem-at-a-time constructions.

— 19 —

ANOTHER WAY: SIMULATION BY INTERPRETATION

Turing completeness is usually shown by simulation, e.,g.,

I for any 2CM program you build a biomolecular system such

that . . .

But: the biomolecular system is usually built by hand. The

effect: hand computation of the ∃ quantifier in

∀p∃q([[p]]L = [[q]]M)

In contrast, Turing’s original “Universal machine” (UM) works

by interpretation, where ∃ is realised by machine.

I The UM can execute any TM program, if coded on the UM’s

tape along with its input data.

I Our research follows Turing’s line, in a biological context:

It does simulation by general interpretation, and not by one-

problem-at-a-time constructions.

— 20 —

PROGRAM EXECUTION BY INTERPRETATION

I
[[interpreter]](program, datain) = dataout

I Now program is a passive data object: both program and

datain are data for the interpreter.

I program is now executed by running the interpreter program.

(Of course, some mechanism will be needed to run the

interpreter, e.g., hard-, soft- or wetware.)

I Self-interpretation is possible, and useful in practice.

I The Universal Turing machine is a self-interpreter.

— 21 —

A “BLOB UNIVERSAL MACHINE”

We have developed a self-interpreter for the blob formalism –

analogous to Turing’s original universal machine.

This gives: Turing-completeness in a new biological framework.

— 22 —

BIRDS-EYE VIEW OF THE SELF-INTERPRETER

(Not shown: Each ’finger’ along the periphery has a connection to the main control in the center)

— 23 —

CONTRIBUTIONS OF THIS WORK

I Programmable bio-level computation where programs = data.

I Blob semantics by abstract biochemical reaction rules.

I All computable functions are blob-computable:

• Can do with one fixed, set of reaction rules (defining a

fixed instruction set, i.e., a “machine language”)

•Don’t need new rule sets (i.e., biochemical architectures)

to solve new problems; it’s enough to write new programs.

I (Uniform) Turing-completeness

I Promise of tighter analogy between universality and

self-reproduction.

I Interpreters and compilers make sense at biological level,

may give useful operational and utilitarian tools.

— 24 —

WHERE TO NOW?

Some points to address:

I Find a true, biological (not just “feasible”) implementation

of the fixed set of reduction rules in vitro.

I Programs are currently similar to classical machine code; this

requires programmer skill. Solution: Devise an intermediate-

level blob programming language.

I Still to analyse: The time or energy cost of performing a

single program step (may depend on program/data). An

appropriate and realistic cost model should be found.

I Bonus: This could initiate a study of computational com-

plexity in the blob world.

— 25 —

THANK YOU!

Questions?

— 26 —

