
Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

A Simple Supercompiler Formally Verified in
Coq

Dimitur Krustev

IGE+XAO Balkan

4 July 2010 / META 2010

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Outline

1 Introduction
Questions on the Title
Decomposition of Supercompilation
Coq Features Used

2 Supercompiler Organization and Correctness Proof
Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

3 Possible Extensions and Applications
Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Outline

1 Introduction
Questions on the Title
Decomposition of Supercompilation
Coq Features Used

2 Supercompiler Organization and Correctness Proof
Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

3 Possible Extensions and Applications
Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Questions on the Title.

Supercompiler?
Formal verification?

Important for non-experimental supercompilers
Fresh look over supercompilation process

In Coq?
A matter of taste
Non-critical (very few Coq-specific features used)

Simple?
Toy language ...
... over a toy data domain (simple binary trees).
Cut supercompilation into smaller pieces ...
... with modular proofs of correctness.
But: less powerful supercompiler

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Questions on the Title.

Supercompiler?
Formal verification?

Important for non-experimental supercompilers
Fresh look over supercompilation process

In Coq?
A matter of taste
Non-critical (very few Coq-specific features used)

Simple?
Toy language ...
... over a toy data domain (simple binary trees).
Cut supercompilation into smaller pieces ...
... with modular proofs of correctness.
But: less powerful supercompiler

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Questions on the Title.

Supercompiler?
Formal verification?

Important for non-experimental supercompilers
Fresh look over supercompilation process

In Coq?
A matter of taste
Non-critical (very few Coq-specific features used)

Simple?
Toy language ...
... over a toy data domain (simple binary trees).
Cut supercompilation into smaller pieces ...
... with modular proofs of correctness.
But: less powerful supercompiler

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Questions on the Title.

Supercompiler?
Formal verification?

Important for non-experimental supercompilers
Fresh look over supercompilation process

In Coq?
A matter of taste
Non-critical (very few Coq-specific features used)

Simple?
Toy language ...
... over a toy data domain (simple binary trees).
Cut supercompilation into smaller pieces ...
... with modular proofs of correctness.
But: less powerful supercompiler

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Questions on the Title.

Supercompiler?
Formal verification?

Important for non-experimental supercompilers
Fresh look over supercompilation process

In Coq?
A matter of taste
Non-critical (very few Coq-specific features used)

Simple?
Toy language ...
... over a toy data domain (simple binary trees).
Cut supercompilation into smaller pieces ...
... with modular proofs of correctness.
But: less powerful supercompiler

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Outline

1 Introduction
Questions on the Title
Decomposition of Supercompilation
Coq Features Used

2 Supercompiler Organization and Correctness Proof
Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

3 Possible Extensions and Applications
Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Decomposition of Supercompilation (classical).

Classical Organization of Supercompilation

������������	
���
�
��������������	��

�	��������	������
����	�
������	�����	
������

������
�

��������
�����

��

�����
�
�

��	���

�����
�

	
����!

��

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Decomposition of Supercompilation (this work).

Simple normalization (≈ deforestation − unfolding) -
normConv
Example term := IfNil Id Id (Tl # Hd).
Eval compute in (ntrm2trm (normConv (term $ term))).

= IfNil Id (IfNil Id Id (Tl # Hd)) (Hd # Tl) : Trm
Theorem normConvPreservesEval: forall (t: Trm) (v: Val),

evalNT (normConv t) v = evalT t v.

Propagation of test outcomes inside if-branches - norm
Eval compute in (ntrm2trm (norm (term $ term))).

= IfNil Id Nil (Hd # Tl) : Trm
Theorem normPreservesEval: forall t v,

evalNT (norm t) v = evalT t v.

Single-step loop unrolling - unrollToInit
Ensuring termination - firstEmbedded
Multi-step loop unrolling - sscp

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Decomposition of Supercompilation (this work).

Simple normalization (≈ deforestation − unfolding) -
normConv
Example term := IfNil Id Id (Tl # Hd).
Eval compute in (ntrm2trm (normConv (term $ term))).

= IfNil Id (IfNil Id Id (Tl # Hd)) (Hd # Tl) : Trm
Theorem normConvPreservesEval: forall (t: Trm) (v: Val),

evalNT (normConv t) v = evalT t v.

Propagation of test outcomes inside if-branches - norm
Eval compute in (ntrm2trm (norm (term $ term))).

= IfNil Id Nil (Hd # Tl) : Trm
Theorem normPreservesEval: forall t v,

evalNT (norm t) v = evalT t v.

Single-step loop unrolling - unrollToInit
Ensuring termination - firstEmbedded
Multi-step loop unrolling - sscp

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Decomposition of Supercompilation (this work).

Simple normalization (≈ deforestation − unfolding) -
normConv
Example term := IfNil Id Id (Tl # Hd).
Eval compute in (ntrm2trm (normConv (term $ term))).

= IfNil Id (IfNil Id Id (Tl # Hd)) (Hd # Tl) : Trm
Theorem normConvPreservesEval: forall (t: Trm) (v: Val),

evalNT (normConv t) v = evalT t v.

Propagation of test outcomes inside if-branches - norm
Eval compute in (ntrm2trm (norm (term $ term))).

= IfNil Id Nil (Hd # Tl) : Trm
Theorem normPreservesEval: forall t v,

evalNT (norm t) v = evalT t v.

Single-step loop unrolling - unrollToInit
Ensuring termination - firstEmbedded
Multi-step loop unrolling - sscp

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Outline

1 Introduction
Questions on the Title
Decomposition of Supercompilation
Coq Features Used

2 Supercompiler Organization and Correctness Proof
Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

3 Possible Extensions and Applications
Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Coq Features Used.

Coq: Proof assistant based on CoC + inductive types
Simplified point of view:

Total(!) functional programming language
Inductive datatypes (Inductive ... := ... |)
Pattern matching
(match ... with ... => ... | ... end)
Structural recursion (top-level - Fixpoint, local - fix)
lambda-functions (fun ... => ...)

Interactive proofs in intuitionistic logic
The usual logical quantifiers/connectives
forall, exists, ->, /\, \/, ~, <->
Interactive tactics for proofs by induction, rewriting, etc.

Not used: dependent types(!), co-induction, classical logic

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Questions on the Title
Decomposition of Supercompilation
Coq Features Used

Coq Examples.

Inductive datatypes
Inductive nat: Set := O : nat | S : nat -> nat.

Definitions by structural recursion
Fixpoint power (n m : nat) {struct m} : nat :=
match m with
| 0 => 1 | S m1 => n * power n m1
end.

Eval compute in (power 2 5).
= 32 : nat

Partial evaluation
Eval cbv beta iota delta -[mult] in
(fun n => power n 3).

= fun n : nat => n * (n * (n * 1)) :nat -> nat

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Outline

1 Introduction
Questions on the Title
Decomposition of Supercompilation
Coq Features Used

2 Supercompiler Organization and Correctness Proof
Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

3 Possible Extensions and Applications
Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Expression Sublanguage – Syntax.

Data domain: simple binary trees (S-expressions with 1
atom)
Inductive Val: Set := | VNil: Val

| VCons: Val -> Val -> Val | VBottom: Val.

Expression language: tree constructors and selectors,
identity, function composition, if-expressions
Inductive Selector: Set := | HD | TL.
Inductive Trm: Set := | Nil: Trm

| Cons: Trm -> Trm -> Trm | Sel: Selector -> Trm
| Id: Trm | Cmp: Trm -> Trm -> Trm
| IfNil: Trm -> Trm -> Trm -> Trm | Bottom.

Infix "$" := Cmp (at level 60, right associativity).
Notation Hd := (Sel HD). Notation Tl := (Sel TL).
Infix "#" := Cons (at level 62, right associativity).

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Expression Sublanguage – Semantics.

Definition evalSel (sel: Selector) (v: Val) : Val :=
match v with | VCons v1 v2 =>

match sel with | HD => v1 | TL => v2 end
| _ => VBottom
end.

Fixpoint evalT (t: Trm) (v: Val) {struct t} : Val :=
match t with
| Nil => VNil | Bottom => VBottom
| Cons t1 t2 => VCons (evalT t1 v) (evalT t2 v)
| Sel sel => evalSel sel v | Id => v
| Cmp t1 t2 => evalT t1 (evalT t2 v)
| IfNil t1 t2 t3 => match evalT t1 v with

| VNil => evalT t2 v | VCons _ _ => evalT t3 v
| VBottom => VBottom
end

end.

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Simple Normalization.

Based on simplifications like:
Cmp Hd (Cons x y) ≈ x
IfNil (IfNil x y z) u v ≈
IfNil x (IfNil y u v) (IfNil z u v)

Produces terms in normal form:
Inductive NTrm: Set :=

| NNil: NTrm | NCons: NTrm -> NTrm -> NTrm
| NSelCmp: list Selector -> NTrm
| NIfNil: list Selector -> NTrm -> NTrm -> NTrm
| NBottom: NTrm.

... which can injected back into full-blown terms:
Fixpoint ntrm2trm (nt: NTrm) : Trm := ...
Definition evalNT nt v := evalT (ntrm2trm nt) v.

Structurally-recursive implementation:
Fixpoint normConv (t: Trm) : NTrm := ...

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Simple Normalization – Correctness.

Tricky point - no full function composition in normal forms,
yet we can still compose them:
Definition normNCmp : NTrm -> NTrm -> NTrm := ...
Lemma normNCmpPreservesEval: forall nt1 nt2 v,
evalNT (normNCmp nt1 nt2) v = evalNT nt1 (evalNT nt2 v).

With the help of some other (simpler) lemmas like:
Lemma normSelsNCmpPreservesEvalT: forall sels nt v,
evalT (ntrm2trm (normSelsNCmp sels nt)) v
= evalSels sels (evalT (ntrm2trm nt) v).
Lemma normNCmpIfIf: forall sels1 sels2 nt1_1 nt1_2 nt2_1
nt2_2, let nt1 := NIfNil sels1 nt1_1 nt1_2 in
normNCmp nt1 (NIfNil sels2 nt2_1 nt2_2)
= NIfNil sels2 (normNCmp nt1 nt2_1) (normNCmp nt1 nt2_2).

... we can establish correctness of simple normalization:
Theorem normConvPreservesEval: forall t v,

evalNT (normConv t) v = evalT t v.

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Outline

1 Introduction
Questions on the Title
Decomposition of Supercompilation
Coq Features Used

2 Supercompiler Organization and Correctness Proof
Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

3 Possible Extensions and Applications
Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Poor-man Explicit Substitutions.

Primitives for pairing and function composition give us:
Variable-free programming
Simple form of explicit substitutions

Example: IfNil x1 x2 x3 has 3 free variables.
Pack them into an input tree: x1 # x2 # x3
Replace the original expression with:
IfNil Hd (Hd $ Tl) (Tl $ Tl)

Computing object-level representations of substitutions:
replaceAt (pos: list Selector) (t tr: NTrm): NTrm

Now, we can represent and apply the substitution of Nil for x2
in the above expression:
let nt1 := normConv (IfNil Hd (Hd $ Tl) (Tl $ Tl)) in
let nt2 := normConv Nil in let x2p := TL::HD::nil in
ntrm2trm (normNCmp nt1 (replaceAt x2p (normConv Id) nt2)))

= IfNil Hd Nil (Tl $ Tl)

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Propagation of Test Outcomes in Branches.

Internalize propagation of if-condition outcome:
Definition setNilAt (sels: list Selector): NTrm :=
replaceAt sels (NSelCmp nil) NNil.

Definition setConsAt (sels: list Selector) : NTrm :=
replaceAt sels (NSelCmp nil)
(NCons (NSelCmp (sels ++ HD::nil))

(NSelCmp (sels ++ TL::nil))).
Fixpoint propagateIfCond (nt: NTrm) {struct nt} : NTrm :=
...
| NIfNil sels nt1 nt2 =>
let nt1a := propagateIfCond nt1 in
let nt2a := propagateIfCond nt2 in
let nt1b := normNCmp nt1a (setNilAt sels) in
let nt2b := normNCmp nt2a (setConsAt sels) in
NIfNil sels nt1b nt2b

...

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Propagation of Test Outcomes – Correctness.

Test outcome propagation on top of simple normalization
Easier to give structurally recursive (total) definition
Easier to prove correctness on top of normalization
correctness proof

Theorem propagateIfCondPreservesEval: forall nt v,
evalNT (propagateIfCond nt) v = evalNT nt v.

Definition norm (t: Trm) :=
propagateIfCond (normConv t).

Theorem normPreservesEval: forall t v,
evalNT (norm t) v = evalT t v.

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Outline

1 Introduction
Questions on the Title
Decomposition of Supercompilation
Coq Features Used

2 Supercompiler Organization and Correctness Proof
Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

3 Possible Extensions and Applications
Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

SWhile Language.

Expression language - not Turing-complete
Embed in simple imperative language (“SWhile”) with:

while-loops
single (implicit) variable

Inductive SWhileStmt: Set :=
| Assign: Trm -> SWhileStmt
| Seq: SWhileStmt -> SWhileStmt -> SWhileStmt
| While: Trm -> SWhileStmt -> SWhileStmt.

Infix ";" := Seq (at level 65, right associativity).
Notation "’VAR’ ’<-’ e" := (Assign e) (at level 64).
Notation "’WHILE’ cond ’DO’ body ’DONE’":=(While cond body)

Further simplification - single while-loop (analog to Kleene
normal forms in recursion theory)
VAR <- initExp knf;
WHILE condExp knf DO VAR <- bodyExp knf DONE;
VAR <- finalExp knf

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

SWhile Language – Semantics.

“SWhile” semantics in Coq?
inductive relations (elegant, non-executable)
or, a “folk” trick:

replace a partial function f : X -> Y
with a total function f’ : nat -> X -> option Y,
where
f’ d x = Some y -> f x = y ((f x) is defined)
f’ d x = None means (f x) cannot be computed in
“stack depth” d
(f’ is structurally recursive on d)

Total “quasi-interpreter” for single-loop programs:
Definition evalKNF (d: nat) (knf: KNFProg) (v: Val)
: option Val := ...

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Loop Unrolling

Analog to call unfolding in “SWhile”: loop unrolling
Only a simple form of (single-step) unrolling considered –
replace:
VAR <- initExp knf;
WHILE condExp knf DO VAR <- bodyExp knf DONE;
VAR <- finalExp knf

with:
VAR <- ntrm2trm (norm
(IfNil (condExp knf) Id (bodyExp knf) $ initExp knf));

WHILE condExp knf DO VAR <- bodyExp knf DONE;
VAR <- finalExp knf

Process tree replaced by a stream of repeated unrollings

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Final Supercompiler, Correctness.

“Whistle” – the usual one: homeomorphic embedding
No need for folding, generalization in this (over-)simplified
setting
Final supercompiler
Definition sscp ... (n : nat) (knf : KNFProg)

: option KNFProg := ...
Correctness: a) Totality (using Kruskal’s Tree Theorem as
an axiom)
Theorem sscp_total: forall b knf, exists n,
exists knf1, sscp b n knf = Some knf1.

... b) Preservation of semantics
Theorem sscp_correct: forall b knf knf1 n v1 v2,
strictTrm (condExp knf) -> sscp b n knf = Some knf1 ->
((exists d1, evalKNF d1 knf v1 = Some v2) <->
(exists d2, evalKNF d2 knf1 v1 = Some v2)).

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Example of Supercompilation.

Consider the usual Lisp-like encoding of lists and booleans
as S-expressions (WFalse := Nil, WTrue := Nil # Nil,
etc.)
A program to check if the input list contains WFalse:
VAR <- Id # WFalse; {VAR = input # output}
WHILE Hd DO
VAR <- IfNil (Hd $ Hd) (Nil # WTrue) (Tl $ Hd # Tl)

DONE;
VAR <- Tl {VAR = output}

Its specialized version – non-empty input list prepended with its
negated head:
Definition listHasWFalse_knf_negdupHd :=
let negate x := IfNil x WTrue WFalse in
modifyKNFinput listHasWFalse_knf
(IfNil Id Id (negate Hd # Id)).

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Example of Supercompilation (cont.)

Result of supercompiling the specialized version:
VAR <- IfNil Id (Nil # WFalse)
(IfNil Hd (Nil # WTrue) (Nil # WTrue));

WHILE Hd DO
VAR <- IfNil (Hd $ Hd) (Nil # WTrue) (Tl $ Hd # Tl)

DONE; VAR <- Tl

... and with superfluous IfNil removed further by hand:
VAR <- IfNil Id (Nil # WFalse) (Nil # WTrue);
WHILE Hd DO
VAR <- IfNil (Hd $ Hd) (Nil # WTrue) (Tl $ Hd # Tl)

DONE; VAR <- Tl

Loop still here but a simple static post-processing could remove
it

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

Example of Supercompilation (end)

We can define a downsized version of the supercompiler,
without information propagation: sscp’
Its result on the example:
VAR <- IfNil Id

(IfNil Id (IfNil Id Id (IfNil Hd (Nil # Nil) Nil # Id) # Nil)
(IfNil Id (IfNil Hd (Nil # Nil # Nil) (IfNil Id Tl Id # Nil))

(IfNil Hd (IfNil Id Tl Id # Nil) (Nil # Nil # Nil))))
(IfNil Id (IfNil Hd (Nil # Nil # Nil) (IfNil Id Tl Id # Nil))

(IfNil Hd (IfNil Id Tl Id # Nil) (Nil # Nil # Nil)));
WHILE Hd
DO VAR <- IfNil (Hd $ Hd) (Nil # Nil # Nil) (Tl $ Hd # Tl) DONE;
VAR <- Tl

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Outline

1 Introduction
Questions on the Title
Decomposition of Supercompilation
Coq Features Used

2 Supercompiler Organization and Correctness Proof
Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

3 Possible Extensions and Applications
Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Expression Language – Tests, Extensional
Equivalence

Normalization can simplify test generation
Inductive NTrm: Set :=
| NNil: NTrm | NCons: NTrm -> NTrm -> NTrm
| NSelCmp: list Selector -> NTrm
| NIfNil: list Selector -> NTrm -> NTrm -> NTrm
| NBottom: NTrm.

Idea: expressions can extract information from input tree
only through selector compositions

max. length of selector compositions = N
⇒ Expression cannot look deeper than N inside input tree
Trees of depth ≤ N should suffice as tests

Finite tests sets⇒ extensional equivalence decidable

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Outline

1 Introduction
Questions on the Title
Decomposition of Supercompilation
Coq Features Used

2 Supercompiler Organization and Correctness Proof
Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

3 Possible Extensions and Applications
Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

More Realistic Language

More powerful forms of loop unrolling?
Add function calls to expression language
Inductive Trm: Set :=
...
| Ref: FunRef -> Trm.

It becomes Turing-complete
Still possible to:

Isolate simple normalization, and information propagation
Implement them by structural recursion

Complications:
How to specify semantics in Coq?
Normal forms - slightly more complicated
We need folding and generalization now
Termination proof of full supercompiler with generalization –
more complicated(?)

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Outline

1 Introduction
Questions on the Title
Decomposition of Supercompilation
Coq Features Used

2 Supercompiler Organization and Correctness Proof
Expression Language and Simple Normalization
Propagation of Test Outcomes in Branches
Full Language, Loop Unrolling

3 Possible Extensions and Applications
Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Test Generation, Extensional Equivalence
More Realistic Language
Use Information Propagation in Isolation

Use Information Propagation in Isolation

Apply (positive) information propagation in cases where we
do need the full power of supercompilation (with its
complications, like “whistle”, etc.)
In systems like Coq itself; example:
Fixpoint listHasFalse (l: list bool) : bool :=
match l with | nil => false
| false::_ => true
| true::l1 => listHasFalse l1
end.

Goal forall b l, listHasFalse (b::negb b::l) = true.
compute. fold listHasFalse.

...
forall (b : bool) (l : list bool), (if b then
if if b then false else true then listHasFalse l
else true else true) = true

Strengthen stream fusion?
...

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

Introduction
Supercompiler Organization and Correctness Proof

Possible Extensions and Applications
Summary

Summary

First formal verification of a supercompiler.
Helped by a more fine-grained decomposition of the
supercompilation process.

Structurally recursive deforestation and information
propagation, with separate proofs.
Simple form of explicit substitutions also helpful.

Outlook
Extend to more realistic languages, more powerful
transformations.
Applications to test generation, compiler optimizations.
Some day: self-verifiable supercompiler

Dimitur Krustev A Simple Supercompiler Formally Verified in Coq

	Introduction
	Questions on the Title
	Decomposition of Supercompilation
	Coq Features Used

	Supercompiler Organization and Correctness Proof
	Expression Language and Simple Normalization
	Propagation of Test Outcomes in Branches
	Full Language, Loop Unrolling

	Possible Extensions and Applications
	Test Generation, Extensional Equivalence
	More Realistic Language
	Use Information Propagation in Isolation

