
Inferring and proving properties of
functional programs by means of

supercompilation

Ilya Klyuchnikov
Keldysh Institute of Applied Mathematics

http://pat.keldysh.ru/~ilya/

Meta 2010

1Friday, July 2, 2010

Outline

1. Program analysis by transformation
o Problem definition

2. What is supercompilation
3. Supercompiler HOSC
4. Detecting equivalent expressions

o Checking correctness of monads
5. Higher-level supercompilation

o Detecting improvement lemmas
o Examples of higher-level supercompilation

6. On the equivalence of abstract machines

2Friday, July 2, 2010

Outline

1. Program analysis by transformation
o Problem definition

2. What is supercompilation
3. Supercompiler HOSC
4. Detecting equivalent expressions

o Checking correctness of monads
5. Higher-level supercompilation

o Detecting improvement lemmas
o Examples of higher-level supercompilation

6. On the equivalence of abstract machines

3Friday, July 2, 2010

Problem of correctness
Errors are expensive:

1. 1994. The Pentium FDIV bug (a bug in the Intel P5 Pentium
floating point unit)

2. 1996. Ariane 5 Flight 501. The rocket was destroyed by its
automated self-destruct system

3. 1998. Huygens probe. Channel A data lost.

4Friday, July 2, 2010

Checking correctness of programs

• Testing (unit testing): p(f(x1)),...,p(f(xn)).
• Formal verification: ∀ X P(f(X))

o Model checking
• Checking by transformation:

p(f(X)) ==> p'(X)
(not well-studied)
From testing: p is code in the same language as program
being tested
From verification: all cases rather than several.

Many errors are detectable in models rather than in real
programs.
Example - Mars Pathfinder 1997 (incorrect synchronization
of processes).

5Friday, July 2, 2010

Analysis by transformation
p(X, f(X)) - a statement about program f
 (p is a program on the same language!)
The statement is transformed:
p(X, f(X))=> p'(X)
 The transformed statement is analyzed mechanically.

p'(X) has the form True
 Verified. p' doesn't depend on X, so ∀X: p'(X).

p'(X) has the form ... False ...
 Possibly, an error is found: ∃X: p'(X)
(Further analysis is required)
An application: Xu, Peyton Jones and Claessen. Static contract
checking for Haskell. IN Proceedings of the 36th annual symposium on
Principles of programming languages. 2009. (Contraсts + symbolic
execution at compile time)

6Friday, July 2, 2010

Verification and supercompilation

Supercompilation is a program transformation technique
capable of simplifying composition of function.

Successful application - Nemytykh 2005, 2007:

Verification of models of cache-coherent protocols coded in
REFAL (Андрей Немытых).
test(loop(actions)) => loop'(actions)
loop' is analized

Errors were found in two published protocols.

7Friday, July 2, 2010

Problem definition
Investigate facilities of program analysis by supercompilation
in the higher-order call-by-name setting.
Haskell language (call-by-name) is chosen.
• Functional

o Algebraic specifications (contacts)
• Lazy evaluation

o Infinite data structures
o Process modeling

• Higher-order functions
o Specs may contain universally quantified functions (second-

order logic)
o Predicates as arguments of other predicates (higher-order logic)

• Statically typed
o Reliable specifications

8Friday, July 2, 2010

Outline

1. Program analysis by transformation
o Problem definition

2. What is supercompilation
3. Supercompiler HOSC
4. Detecting equivalent expressions

o Checking correctness of monads
5. Higher-level supercompilation

o Detecting improvement lemmas
o Examples of higher-level supercompilation

6. On the equivalence of abstract machines

9Friday, July 2, 2010

What is supercompilation
Construction of tree of calculations
(tree is infinite in general)

f(x, y)= if x > 0
 then h(x)
 else g(y, y)
g(x, y) = k(x, y)
h(x) = f(x, 2)
k(x, y) = g(h(x), y)

10Friday, July 2, 2010

What is supercompilation
Folding of tree into a finite graph
(reduction of configurations to already
processed ones)

f(x, y)= if x > 0
 then h(x)
 else g(y, y)
g(x, y) = k(x, y)
h(x) = f(x, 2)
k(x, y) = g(h(x), y)

11Friday, July 2, 2010

What is supercompilation

Detection of infinite branches f(x, y)= if x > 0
 then h(x)
 else g(y, y)
g(x, y) = k(x, y)
h(x) = f(x, 2)
k(x, y) = g(h(x), y)

12Friday, July 2, 2010

What is supercompilation
Generalization
(in order to create opportunities for
folding)

f(x, y)= if x > 0
 then h(x)
 else g(y, y)
g(x, y) = k(x, y)
h(x) = f(x, 2)
k(x, y) = g(h(x), y)

13Friday, July 2, 2010

What is supercompilation

Generalization criteria (whistle): homeomorphic embedding of
configurations
 g(y , y) ◁ g(h(y) , y)

Theorem (Kruskal, Higman) 1950-s. For any
infinite sequence of expressions
e1, e2, ... en ...
there exist i < j such, that ei ◁ ej

14Friday, July 2, 2010

Outline

1. Program analysis by transformation
o Problem definition

2. What is supercompilation
3. Supercompiler HOSC
4. Detecting equivalent expressions

o Checking correctness of monads
5. Higher-level supercompilation

o Detecting improvement lemmas
o Examples of higher-level supercompilation

6. On the equivalence of abstract machines

15Friday, July 2, 2010

Requirements

Logical properties

• Strict preserving of equivalence
• Higher-order fuctions (higher-order logic)
• Infinite data structures (modeling of infinite processes)

"Quality guarantee"

• Proof of correctness (can we trust, whether equivalence is
really preserved?)

• Proof of termination (nice to have)
• Source code

16Friday, July 2, 2010

Status of existing supercompilers

Equivalent
transformation

Higher-
order
functions

Infinite data
structures

Proof of
correctness

Proof of
termination

Source
code

SCP 4
(Turchin, Nemytykh)
1980 - 2000 - - - - - +
Simple supercompiler
(Sørensen) - 1990-s + - + + + -
Supercompiler for
TSG
(Abramov) - 1990-е + - - - - +
Jscp
(Klimov et al.) + - - - - -
Supero
(Mitchell)
2007 + + + - - (!) +
Supercompiler
for Timber (Jonsson)
2008 + + - + + -

17Friday, July 2, 2010

Supercompiler HOSC
• Correctness is proved
• Open source
• Web-interface
http://code.google.com/p/hosc/
http://hosc.appspot.com

Equivalent
transformation
s

Higher-order
functions

Infinite data
structures

Proof of
correctness

Proof of
termination

Source
code

Supercompiler
HOSC (Klyuchnikov)
2008 + + + + + +
Klyuchnikov I.G. Supercompiler HOSC 1.0: under the hood KIAM Preprint
№ 63, Moscow, 2009.

18Friday, July 2, 2010

Encountered problems
Higher-order functions:
• Bound variables
• Program may loop without explicit recursion
• What is equivalence?

Goal is analysis rather than optimization
• Sometimes it is useful to "degrade" the program (in terms of

performance)

What had to be done?
• Extended homeomorphic embedding taking into account

bound variables
• Extended generalization algorithm
• Preventing infinite reduction
• Decreasing arity (lambda-dropping)
• Folding of any configurations is allowed

19Friday, July 2, 2010

Extended homeomorphic embedding

Distinguishing bound variables
\x y z -> Cons x (Cons y z) \x y z -> Cons z (Cons y x)

20Friday, July 2, 2010

Extended homeomorphic embedding
Classical embedding

Extended embedding

Variables Diving

Coupling

Variables Diving Coupling

Variables Diving

Coupling

21Friday, July 2, 2010

Extended embedding is well-quasi-
order
Theorem (Kruskal, Higman). For any infinite sequence of
expressions e1, e2, ... en, ..
there are i<j, such that
ei ◁ ej

Extended whistle doesn't blow for ANY sequence!

Theorem (Klyuchnikov). For any infinite sequence of
expressions e1, e2, ... en, .., located at a branch of partial
process tree t, there are i<j, such that
ei ◁* ej

22Friday, July 2, 2010

Proof of terminations
Encountered problems?

• Infinite set of bound variables
• Unbounded arity of application
• Termination depends on typing!
• We need to fold not only con<f> configurations

Klyuchnikov I.G. Supercompiler HOSC 1.1: proof of termination. KIAM Preprint
№ 21, Moscow, 2010.

23Friday, July 2, 2010

Proof of termination
Counter-example was found:

data D = F (D -> D);

fix h where

fix = \f -> apply
 (F (\x -> f (apply x x)))
 (F (\x -> f (apply x x)));

apply = \x -> case x of { F f -> f; };

If folding of configurations in the form con<f>
only is allowed then supercompilation will terminate because of
calls to apply

24Friday, July 2, 2010

Proof of termination
Let us inline apply into a definition of fix

data D = F (D -> D);

fix h where

fix = \f -> (\y -> case y of { F g -> g; })
 (F (\x -> f ((\y -> case y of { F g -> g; }) x x)))
 (F (\x -> f ((\y -> case y of { F g -> g; }) x x)));

No termination anymore!
Supercompiler HOSC 1.0 doesn't terminate
Supercompilers Supero и Supero 2010 do not terminate as well!
http://community.haskell.org/~ndm/temp/
Discussion in Google Groups

25Friday, July 2, 2010

Proof of termination
Let us inline apply into a definition of fix

data D = F (D -> D);

fix h where

fix = \f -> (\y -> case y of { F g -> g; })
 (F (\x -> f ((\y -> case y of { F g -> g; }) x x)))
 (F (\x -> f ((\y -> case y of { F g -> g; }) x x)));

HOSC 1.1 supercompiles it into:

letrec g = h g in g

26Friday, July 2, 2010

Correctness
What is equivalence?

In the first-order setting equivalence of programs reduces to the
equality of results (data)
f = g, if
∀x: f(x) = g(x).

In the higher-order setting f(x) may be a function! - How to
compare functions?

27Friday, July 2, 2010

Correctness
Operational theory of improvement (Sands, 1990)

Context is an expression С with a hole [] in the place of a
subexpression. C[e] - expression, where hole is replaced by e.

Equivalence - expressions e1 and e2 are equivalent, if for any context
C evaluations of both C[e1] and C[e2] either converge or diverge.

An expression e2 is an improvement of an expression e1, if for any
context C, if computation of C[e1] terminates using n function
calls, then computation of C[e2] terminates using no more than n
function calls.

28Friday, July 2, 2010

Correctness
Operational theory of improvement (Sands, 1990)

Operational theory of improvement is a "standard" toll for proving
correctness of program transformations:
• Higher-Order Deforestation (Сэндс, 1995)
• Call-by-value Higher-Order Supercompilation (Jonsson, 2008)
• Flattening is an Improvement (Riely, Prins, 2000)
• ...

The idea is to show that a transfomed program is an improvement of an
original program (and additional conditions hold).

29Friday, July 2, 2010

Proof of correctness
Problems encountered:

1. The result of transformation performed by HOSC is not neccessary
an improvement (may be good for analysis).
o In order to prove correctness, we use supercombinators with

maximal free expressions abstracted (Peyton Jones)
2. Decreasing arity of functions

o We show correctness of transformation without decreasing arity
and use correctness of lambda-dropping.

3. Typing: inferred type of transformed expression may be more
general (No one pointed it out yet)
o We use explicit type constraints in a residual program.

Klyuchnikov I.G. Supercompiler HOSC: proof of correctness. KIAM Preprint
№ 31, Moscow, 2010.

30Friday, July 2, 2010

Outline

1. Program analysis by transformation
o Problem definition

2. What is supercompilation
3. Supercompiler HOSC
4. Detecting equivalent expressions

o Checking correctness of monads
5. Higher-level supercompilation

o Detecting improvement lemmas
o Examples of higher-level supercompilation

6. On the equivalence of abstract machines

31Friday, July 2, 2010

Proving equivalence of expressions

The basic idea

A.P. Lisitsa and M. Webster. Supercompilation for Equivalence Testing in
Metamorphic Computer Viruses Detection. Proceedings of the First
International Workshop on Metacomputation in Russia, 2008

32Friday, July 2, 2010

Proving equivalence of expressions

The basic idea

It works only if SC preserves equivalence

(Multi-result supercompilation.)

33Friday, July 2, 2010

Example: proof of equivalence
(how to prove?)

data List a = Nil | Cons a (List a);

map = \f xs -> case xs of {
 Nil -> Nil;
 Cons y ys -> Cons (f y) (map f ys);
};

comp = \f g x -> f (g x);

Proposition:

map f (map g xs) = map (comp f g) xs

(for any functions f and g, any list, even infinite one)

34Friday, July 2, 2010

Example: proof of equivalence
(normalizing by supercompilation!)

letrec h = \ys -> case ys of {
 Nil -> Nil;
 Cons z zs -> Cons (f (g z)) (h zs);
} in h xs

map f (map g xs) map (comp f g) xs

35Friday, July 2, 2010

Proof of equivalence

Pros:
• Non-terminating calculations do not need special

consideration
• Reasoning about infinite data
• Equivalence of functions may be prooved

Alternative approach:
equals(f(x), g(x)) => True

Ilya Klyuchnikov and Sergei Romanenko. Proving the Equivalence of Higher-Order Terms
by Means of Supercompilation. In: Proceedings of the Seventh International Andrei Ershov
Memorial Conference: Perspectives of System Informatics. LNCS 5947. 2009.

36Friday, July 2, 2010

HOSC 0: Testing on examples

HOSC 0 proved only 6 of 25 simple
equalities (from the first chapter)

37Friday, July 2, 2010

HOSC 1: proven equivalences
HOSC 1, using extended homeomorphic embedding was
able to prove 25 of 25 equivalences
concatR xs == foldR NilR catR xs
listR (cross (P f g)) (zipR xs ys)
 == uncurry zipR (cross (P (listR f) (listR g)) (P xs ys))
listR f xs == foldR NilR (\a x -> Cons (f a) x) xs
filterR p xs
 == listR outl (filterR outr (uncurry zipR (pair (P id (listR p)) xs)))
listL (listL f) (inits xs) == inits (listL f xs)
listR f (concatR xs) == concatR (listR (listR f) xs)
mult1 x y == foldN Z (\n -> plus1 n y) x
mult1 x y == foldN Z (plus y) x
mult x y == foldN Z (plus x) y
plus1 x y == foldN y succ x
plus x y == foldN x succ y
filterR p xs ==
 foldR NilR (curry (cond (compose p outl) (uncurry cons) outr)) xs
filterR p xs == foldR1 NilR (cond (compose p outl) (uncurry cons) outr) xs

38Friday, July 2, 2010

HOSC 1: proven equivalences
filterR p xs
 == (compose (foldR NilR catR)
 (foldR NilR (\a x -> Cons ((cond p wrapR nilpR) a) x))) xs
filterR p xs ==
 (compose (foldR NilR catR) (listR (cond p wrapR nilpR))) xs
filterR p xs == (compose concatR (listR (cond p wrapR nilpR))) xs
lengthR xs == (compose sum (listR (\x -> S Z))) xs
lengthR xs == foldR Z (\a n -> (S n)) xs
appendL xs ys == foldL1 snoc xs ys
appendL xs ys == foldL id (\f x a -> snoc (f a) x) ys xs
appendR xs ys == foldR id (\x f a -> cons x (f a)) xs ys
appendL xs ys == foldL xs snoc ys
appendR xs ys == foldR ys cons xs
appendL (appendL xs ys) zs == appendL xs (appendL ys zs)
appendR (appendR xs ys) zs == appendR xs (appendR ys zs)

39Friday, July 2, 2010

Outline

1. Program analysis by transformation
o Problem definition

2. What is supercompilation
3. Supercompiler HOSC
4. Detecting equivalent expressions

o Checking correctness of monads
5. Higher-level supercompilation

o Detecting improvement lemmas
o Examples of higher-level supercompilation

6. On the equivalence of abstract machines

40Friday, July 2, 2010

Application: checking monadic laws

1. join (return a) k == k a
2. join m (\x -> join (k x) h) == join (join m k) h
3. join m return == id m
4. fmap (compose f g) xs == compose (fmap f) (fmap g) xs
5. fmap id xs == id xs
6. fmap f xs == join xs (compose return f)
7. join mzero f == mzero
8. bind v mzero == mzero

41Friday, July 2, 2010

Application: checking monadic laws

Maybe monad

data Maybe a = Just a | Nothing;
compose = \f g x -> f (g x);
return = \x -> Just x;
fmap = \f m -> case m of {
 Nothing -> Nothing;
 Just x -> Just (f x);
};
join = \m k -> case m of {
 Nothing -> Nothing;
 Just x -> k x;
};
id = \m -> case m of {
 Nothing -> Nothing;
 Just x -> Just x;
};
gid = \x -> x;
bind = \m k -> join m (\x -> k);
mzero = Nothing;

42Friday, July 2, 2010

Application: checking monadic laws

Maybe Monad
1. +
2. +
3. +
4. +
5. +
6. +
7. +
8. -

List Monad
1. +
2. +
3. +
4. +
5. +
6. +
7. +
8. -

State Monad
1. +
2. +
3. +
4. +
5. +
6. +
7. +
8. +

43Friday, July 2, 2010

Detecting "errors"
8. Maybe

bind v mzero mzero

case v of {
 Nothing -> Nothing;
 Just s -> Nothing;}

Nothing

8. List
bind v mzero mzero

letrec f= \x -> case x of {
 Nil -> Nil;
 Cons y z -> (f z); }
in f v

Nil

=?=

=?=

Residual program may supply useful information

44Friday, July 2, 2010

Outline

1. Program analysis by transformation
o Problem definition

2. What is supercompilation
3. Supercompiler HOSC
4. Detecting equivalent expressions

o Checking correctness of monads
5. Higher-level supercompilation

o Detecting improvement lemmas
o Examples of higher-level supercompilation

6. On the equivalence of abstract machines

45Friday, July 2, 2010

Higher-level supercompilation

46Friday, July 2, 2010

Higher-level supercompilation

47Friday, July 2, 2010

Higher-level supercompilation
Base supercompiler:

def scp0(e) = {
...
if whistle(e1, e2)
 abstract(e1, e2)
...
}

The second-level supercompiler:

def scp1(e) = {
...
if whistle(e1, e2)
 e3 = findEquiv(e1)
 if e3 != null
 replace(e1, e3)
 else
 abstract(e1, e2)
...
}
def findEquiv(e1) = {
 for c <- candidates(e1)
 if scp0(e1) == scp0(c)
 return c
 return null
}

48Friday, July 2, 2010

The correctness of higher-level
supercompilation
Theorem (Sands, 1996). When performing fold/unfold
transformation it is safe to replace e1 by e2 if e2 is a strong
improvement of e1.

If e2 if a strong improvement of e1, then
(e1, e2) is an improvement lemma

49Friday, July 2, 2010

Comparing costs of computations
Annotating a partial process tree

Propagating annotations into a residual program
letrec f=*\v → case v of { Z → True;
 S p → *case p of { Z→ (letrec g = *\w → case w of {
 Z → False;
 S t → * case t of {Z → True; S z → g z;};} in g n;
 S x → f x;};} in f n

50Friday, July 2, 2010

The correctness of higher-level
supercompilation
Theorem (Klyuchnikov). Let

prog'1 - a residual expression for e1
prog'2 - a residual expression for e2

If prog'1 syntactically equivalent to prog'2 (ignoring
annotations) and prog'2 is embedded into prog'1 by
annotations then e2 is a strong improvement of e1 and it is
correct to replace e1 на e2. when constructing a partial process
tree.

Ilya Klyuchnikov and Sergei Romanenko. Towards Higher-Level
Supercompilation. In: Second International Workshop on Metacomputation in
Russia. 2010.

51Friday, July 2, 2010

Outline

1. Program analysis by transformation
o Problem definition

2. What is supercompilation
3. Supercompiler HOSC
4. Detecting equivalent expressions

o Checking correctness of monads
5. Higher-level supercompilation

o Detecting improvement lemmas
o Examples of higher-level supercompilation

6. On the equivalence of abstract machines

52Friday, July 2, 2010

Higher-level supercompilation

Example 1. Accumulating parameter. Input.

data Bool = True | False;
data Nat = Z | S Nat;

even (double x Z) where

even = \x -> case x of { Z -> True; S x1 -> odd x1;};
odd = \x -> case x of { Z -> False; S x1 -> even x1;};

double = \x y ->
 case x of { Z -> y; S x1 -> double x1 (S (S y));};

53Friday, July 2, 2010

Higher-level supercompilation

Example 1. Accumulating parameter.

Classical supercompilation:
letrec f=\w2 p2-> case w2 of {
 Z -> letrec g=\r2-> case r2 of {
 S r -> case r of {Z -> False; S z2 -> g z2;};
 Z -> True;} in g p2;
 S z -> f z (S (S p2));} in f x Z

Higher-level supercompilation:
case x of {
 Z -> True;
 S y1 -> letrec f=\t2->
 case t2 of {Z -> True; S u2 -> f u2;}
 in f y1;
}

54Friday, July 2, 2010

Higher-level supercompilation

Example 2 - Non-linear expression. Input

data Bool = True | False;
data Nat = Z | S Nat;

or (even m) (odd m) where

even = \x -> case x of { Z -> True; S x1 -> odd x1;};
odd = \x -> case x of { Z -> False; S x1 -> even x1;};

or = \x y -> case x of { True -> True; False -> y;};

55Friday, July 2, 2010

Higher-level supercompilation

Example 2 - Non-linear expression

Classical supercompilation:
letrec f = \v-> case v of { Z -> True;
 S p -> case p of { Z -> letrec g = \w->
 case w of {Z -> False;
 S t -> case t of {Z -> True; S z -> g z;});} in g m;
 S x -> f x;};} in f m

Higher-level supercompilation:
letrec f=\w-> case w of {
 Z -> True;
 S x -> case x of { Z -> True; S z -> f z;};
 } in f m

56Friday, July 2, 2010

Higher-level supercompilation

Example 3 - Improving the asymptotic. Non-optimal parser.
Complexity: O(n2)
data Symbol = A | B;
data List a = Nil | Cons a (List a);
data Option a = Some a | None;

match doublea word where

match = \p i -> p (eof return) i;
return = \x -> Some x;
doublea = or nil (join a (join doublea a));
or = \p1 p2 next w -> case p1 next w of { Some w1 -> Some w1;
 None -> p2 next w;};
nil = \next w -> next w;
join = \p1 p2 next w -> p1 (p2 next) w;
a = \next w -> case w of { Nil -> None;
 Cons s w1 -> case s of { A -> next w1; B -> None;};};
b = \next w -> case w of { Nil -> None;
 Cons s w1 -> case s of { A -> None; B -> next w1;};};
eof = \next w -> case w of { Cons s w1 -> None; Nil -> next Nil;};

57Friday, July 2, 2010

Higher-level supercompilation
Example 3 - Improving the asymptotic. Classical
supercompilation: - complexity: O(n2)

case word of {
 Cons y9 t5 ->
 case word of { Cons w13 w9 ->
 case w13 of {
 A -> (letrec f=(\r21-> (\s21-> case r21 of { Cons r3 y5 ->
 case r3 of { A -> case (s21 y5) of { Some z7 -> (Some z7);
 None ->
 ((f y5)
 (\s8->
 case s8 of {
 Cons z5 s18 -> case z5 of { A -> (s21 s18); B -> None; };
 Nil -> None;
 }));
 };
 B -> None;
 }; Nil -> None;}))
 in
 ((f w9) (\v16-> case v16 of { Cons t6 w2 -> None; Nil -> (Some Nil); })));
 B -> None;
 }; Nil -> None;
 };Nil -> (Some Nil);
}

58Friday, July 2, 2010

Higher-level supercompilation

Example 3 - Improving the asymptotic. Higher-level
supercompilation. Complexity: O(n)

letrec
 f=(\s14->
 case s14 of {
 Cons z12 y8 ->
 case z12 of {
 A -> case y8 of {
 Cons s3 s2 -> case s3 of { A -> (f s2); B -> None; };
 Nil -> None; };
 B -> None; };
 Nil -> (Some Nil);
 }
in
 f word

59Friday, July 2, 2010

Higher-level supercompilation

Example 3 - Improving the asymptotic

Input:
p = a p a | empty.

Output:
p' = a a p' | empty.

 Equivalence of grammars is shown!
The general idea:
• Coding knowledge as a program.
• Analysis of a program by transformations.
• Result: inference and proving of properties of objects being modeled

60Friday, July 2, 2010

Higher-level supercompilation

Theorem (Sørensen, 1994). Classical positive supercompiler
for a call-by-name language cannot improve the asymptotic of
a program.

We have shown that a higher-level supercompiler is able to
improve he asymptotic of a program.

61Friday, July 2, 2010

Outline

1. Program analysis by transformation
o Problem definition

2. What is supercompilation
3. Supercompiler HOSC
4. Detecting equivalent expressions

o Checking correctness of monads
5. Higher-level supercompilation

o Detecting improvement lemmas
o Examples of higher-level supercompilation

6. On the equivalence of abstract machines

62Friday, July 2, 2010

Equivalence of abstract machines

Two approches:
• State-transition function together with a ‘driver loop’.
• Collection of mutually tail-recursive transition functions

mapping a given configuration to a final state.

Olivier Danvy, Kevin Millikin. On the equivalence between
small-step and big-step abstract machines: a simple
application of lightweight fusion.
Information Processing Letters. Volume 106, Issue 3
(April 2008).

63Friday, July 2, 2010

Equivalence of abstract machines

data Nat = Z | S Nat;
data List a = Nil | Cons a (List a);
data Term = Var Nat | Lam Term | App Term Term;
data Val = Clo Term (List Val);
data RC = RC0 | RC1 RC Term (List Val) | RC2 Val RC;
data Conf = Eval Term (List Val) RC | Apply RC Val;
data State = Final Val | Inter Conf;

lookup = \i env ->
 case env of {
 Cons n env1 ->
 case i of {
 Z -> n;
 S i1 -> lookup i1 env1;
 };
 };

CEK-machine: definitions

64Friday, July 2, 2010

Equivalence of abstract machines

drive (Inter (Eval t Nil RC0)) where

move = \conf -> case conf of {
 Eval t e c ->
 case t of {
 Var i -> Inter (Apply c (lookup i e));
 Lam t0 -> Inter (Apply c (Clo t0 e));
 App t0 t1 -> Inter (Eval t0 e (RC1 c t1 e));};
 Apply c v ->
 case c of {
 RC0 -> Final v;
 RC1 c1 t1 e -> Inter (Eval t1 e (RC2 v c1));
 RC2 v1 c1 -> case v1 of {
 Clo t2 e2 -> Inter (Eval t2 (Cons v e2) c1);};};};

drive = \state -> case state of {
 Final v -> v;
 Inter conf -> drive (move conf);};

CEK-machine: small-step semantics

65Friday, July 2, 2010

Equivalence of abstract machines

eval t Nil RC0 where

eval = \t e c ->
 case t of {
 Var i -> apply c (lookup i e);
 Lam t1 -> apply c (Clo t1 e);
 App t0 t1 -> eval t0 e (RC1 c t1 e);
 };

apply = \t v ->
 case t of {
 RC0 -> v;
 RC1 c1 t1 e1 -> eval t1 e1 (RC2 v c1);
 RC2 v1 c1 -> case v1 of {
 Clo t2 e2 -> eval t2 (Cons v e2) c1;
 };
 };

CEK-machine: big-step semantics

66Friday, July 2, 2010

Equivalence of abstract machines

Danvy, Millikin:

Normalization by supercompilation

67Friday, July 2, 2010

Mind-map of methods

68Friday, July 2, 2010

Contribution
• The algorithm of higher-order supercompilation is developed. This

algorithm takes into account properties of bound variables:
o The homeomorphic embedding relation was extended.
o A new algorithm of generalization of coupled expressions.
o Proof of termination, proof of correctness.

• A method of higher-level supercompilation (capable to improve the
asymptotic behavior of programs):
o The algorithm for detecting the equivalence of higher-order

expressions.
o The algorithm for detecting improvement lemmas

• Applicability of suggested methods to program analysis by
supercompilation was demonstrated.

69Friday, July 2, 2010

Publications
1.Илья Ключников, Сергей Романенко. SPSC:
Суперкомпилятор на языке Scala. // Программные
продукты и системы. 2009. №2 (86)

2. Ilya Klyuchnikov and Sergei Romanenko. SPSC: a Simple
Supercompiler in Scala. In: International Workshop on
Program Understanding 19-23 June, Altai Mountains,
Russia. 2009

3. Ilya Klyuchnikov and Sergei Romanenko. Proving the
Equivalence of Higher-Order Terms by Means of
Supercompilation. In: Proceedings of the Seventh
International Andrei Ershov Memorial Conference:
Perspectives of System Informatics. LNCS 5947. 2009.

4. Ilya Klyuchnikov and Sergei Romanenko. Towards Higher-
Level Supercompilation. In: Second International Workshop
on Metacomputation in Russia. 2010

70Friday, July 2, 2010

Preprints

1. Klyuchnikov I.G. Supercompiler HOSC 1.0: under the hood
KIAM Preprint № 63, Moscow, 2009.

2. Klyuchnikov I.G. Supercompiler HOSC 1.1: proof of
termination. KIAM Preprint № 21, Moscow, 2010.

3. Klyuchnikov I.G. Supercompiler HOSC: proof of
correctness. KIAM Preprint № 31, Moscow, 2010.

71Friday, July 2, 2010

