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Problem of correctness
Errors are expensive:

1. 1994. The Pentium FDIV bug (a bug in the Intel P5 Pentium 
floating point unit)

2. 1996. Ariane 5 Flight 501. The rocket was destroyed by its 
automated self-destruct system 

3. 1998. Huygens probe. Channel A data lost.
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Checking correctness of programs

• Testing (unit testing): p(f(x1)),...,p(f(xn)).
• Formal verification: ∀ X P(f(X))

o Model checking
• Checking by transformation:

p(f(X)) ==> p'(X)
(not well-studied)
From testing: p is code in the same language as program 
being tested
From verification: all cases rather than several.

Many errors are detectable in models rather than in real 
programs.
Example - Mars Pathfinder 1997 (incorrect synchronization 
of processes).
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Analysis by transformation
p(X, f(X)) - a statement about program f
    (p is a program on the same language!)
The statement is transformed:
p(X, f(X))=> p'(X)
  The transformed statement is analyzed mechanically.

p'(X) has the form True
  Verified. p' doesn't depend on X, so ∀X: p'(X).
 
p'(X) has the form ... False ... 
  Possibly, an error is found: ∃X: p'(X)
(Further analysis is required)
An application: Xu, Peyton Jones and Claessen. Static contract 
checking for Haskell. IN Proceedings of the 36th annual symposium on 
Principles of programming languages. 2009. (Contraсts + symbolic 
execution at compile time)
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Verification and supercompilation

Supercompilation is a program transformation technique 
capable of simplifying composition of function.

Successful application - Nemytykh 2005, 2007:

Verification of models of cache-coherent protocols coded in 
REFAL (Андрей Немытых).
test(loop(actions)) => loop'(actions)
loop' is analized

Errors were found in two published protocols.
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Problem definition
Investigate facilities of program analysis by supercompilation 
in the higher-order call-by-name setting.
Haskell language (call-by-name) is chosen.
• Functional

o Algebraic specifications (contacts)
• Lazy evaluation

o Infinite data structures
o Process modeling

• Higher-order functions
o Specs may contain universally quantified functions (second-

order logic)
o Predicates as arguments of other predicates (higher-order logic)

• Statically typed
o Reliable specifications
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What is supercompilation
Construction of tree of calculations
(tree is infinite in general)

f(x, y)= if x > 0 
         then h(x) 
         else g(y, y)
g(x, y) = k(x, y)
h(x) = f(x, 2)
k(x, y) = g(h(x), y)
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What is supercompilation
Folding of tree into a finite graph
(reduction of configurations to already 
processed ones)

f(x, y)= if x > 0 
         then h(x) 
         else g(y, y)
g(x, y) = k(x, y)
h(x) = f(x, 2)
k(x, y) = g(h(x), y)
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What is supercompilation

Detection of infinite branches f(x, y)= if x > 0 
         then h(x) 
         else g(y, y)
g(x, y) = k(x, y)
h(x) = f(x, 2)
k(x, y) = g(h(x), y)

12Friday, July 2, 2010



What is supercompilation
Generalization
(in order to create opportunities for 
folding)

f(x, y)= if x > 0 
         then h(x) 
         else g(y, y)
g(x, y) = k(x, y)
h(x) = f(x, 2)
k(x, y) = g(h(x), y)
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What is supercompilation

Generalization criteria (whistle): homeomorphic embedding of 
configurations
                          g( y , y ) ◁ g( h( y ) , y )

Theorem (Kruskal, Higman) 1950-s. For any 
infinite sequence of expressions
e1, e2, ...  en ...
there exist  i < j such, that ei ◁ ej
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Requirements

Logical properties
 
• Strict preserving of equivalence
• Higher-order fuctions (higher-order logic)
• Infinite data structures (modeling of infinite processes)

 
"Quality guarantee"

• Proof of correctness (can we trust, whether equivalence is 
really preserved?)

• Proof of termination (nice to have)
• Source code
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Status of existing supercompilers

Equivalent 
transformation

Higher-
order 
functions

Infinite data 
structures

Proof of 
correctness

Proof of 
termination

Source 
code

SCP 4
(Turchin, Nemytykh)
1980 - 2000 - - - - - +
Simple supercompiler
(Sørensen) - 1990-s + - + + + -
Supercompiler for 
TSG
(Abramov) - 1990-е + - - - - +
Jscp
(Klimov et al.) + - - - - -
Supero
(Mitchell)
2007 + + + - - (!) +
Supercompiler
for Timber (Jonsson) 
2008 + + - + + -
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Supercompiler HOSC
• Correctness is proved
• Open source
• Web-interface
http://code.google.com/p/hosc/
http://hosc.appspot.com

Equivalent
transformation
s

Higher-order 
functions

Infinite data 
structures

Proof of 
correctness

Proof of 
termination

Source 
code

Supercompiler
HOSC (Klyuchnikov) 
2008 + + + + + +
Klyuchnikov I.G. Supercompiler HOSC 1.0: under the hood KIAM Preprint 
№ 63, Moscow, 2009.
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Encountered problems
Higher-order functions:
• Bound variables
• Program may loop without explicit recursion
• What is equivalence?

Goal is analysis rather than optimization
• Sometimes it is useful to "degrade" the program (in terms of 

performance)

What had to be done?
• Extended homeomorphic embedding taking into account 

bound variables
• Extended generalization algorithm
• Preventing infinite reduction
• Decreasing arity (lambda-dropping)
• Folding of any configurations is allowed
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Extended homeomorphic embedding

Distinguishing bound variables
\x y z -> Cons x (Cons y z) \x y z -> Cons z (Cons y x)
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Extended homeomorphic embedding
Classical embedding

Extended embedding

Variables Diving

Coupling

Variables Diving Coupling

Variables Diving

Coupling
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Extended embedding is well-quasi-
order
Theorem (Kruskal, Higman). For any infinite sequence of 
expressions e1, e2, ... en, ..
there are i<j, such that
ei ◁ ej

Extended whistle doesn't blow for ANY sequence!

Theorem (Klyuchnikov). For any infinite sequence of 
expressions e1, e2, ... en, .., located at a branch of partial 
process tree t, there are i<j, such that
ei ◁* ej
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Proof of terminations
Encountered problems?
 
• Infinite set of bound variables
• Unbounded arity of application 
• Termination depends on typing!
• We need to fold not only con<f> configurations

 

Klyuchnikov I.G. Supercompiler HOSC 1.1: proof of termination. KIAM Preprint 
№ 21, Moscow, 2010.
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Proof of termination
Counter-example was found:

data D = F (D -> D); 

fix h where 

fix = \f -> apply 
    (F (\x -> f (apply x x)))
        (F (\x -> f (apply x x)));

apply = \x -> case x of { F f -> f; };

If folding of configurations in the form con<f>
only is allowed then supercompilation will terminate because of  
calls to apply

24Friday, July 2, 2010



Proof of termination
Let us inline apply into a definition of fix

data D = F (D -> D); 

fix h where 

fix = \f -> (\y -> case y of { F g -> g; }) 
      (F (\x -> f ((\y -> case y of { F g -> g; }) x x))) 
      (F (\x -> f ((\y -> case y of { F g -> g; }) x x)));

No termination anymore!
Supercompiler HOSC 1.0  doesn't terminate
Supercompilers Supero и Supero 2010 do not terminate as well!
http://community.haskell.org/~ndm/temp/
Discussion in Google Groups
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Proof of termination
Let us inline apply into a definition of fix

data D = F (D -> D); 

fix h where 

fix = \f -> (\y -> case y of { F g -> g; }) 
      (F (\x -> f ((\y -> case y of { F g -> g; }) x x))) 
      (F (\x -> f ((\y -> case y of { F g -> g; }) x x)));

HOSC 1.1 supercompiles it into:

letrec g = h g in g
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Correctness
What is equivalence?

In the first-order setting equivalence of programs reduces to the 
equality of results (data)
f = g, if 
∀x: f(x) = g(x).

In the higher-order setting f(x) may be a function! - How to 
compare functions?
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Correctness
Operational theory of improvement (Sands, 1990)

Context is an expression С with a hole [ ] in the place of a 
subexpression. C[e] - expression, where hole is replaced by e.

Equivalence - expressions e1 and e2 are equivalent, if for any  context 
C evaluations of both C[e1] and C[e2] either converge or diverge.

An expression e2 is an improvement of an expression e1, if for any 
context C, if computation of C[e1] terminates using n function 
calls, then computation of C[e2] terminates using no more than n 
function calls.
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Correctness
Operational theory of improvement (Sands, 1990)

Operational theory of improvement is a "standard" toll for proving 
correctness of program transformations:
• Higher-Order Deforestation (Сэндс, 1995)
• Call-by-value Higher-Order Supercompilation (Jonsson, 2008)
• Flattening is an Improvement (Riely, Prins, 2000)
• ...

The idea is to show that a transfomed program is an improvement of an 
original program (and additional conditions hold).
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Proof of correctness
Problems encountered:

1. The result of transformation performed by HOSC  is not neccessary 
an improvement (may be good for analysis).
o In order to prove correctness, we use supercombinators with 

maximal free expressions abstracted (Peyton Jones)
2. Decreasing arity of functions

o We show correctness of transformation without decreasing arity 
and use correctness of lambda-dropping.

3. Typing: inferred type of transformed expression may be more 
general  (No one pointed it out yet)
o We use explicit type constraints in a residual program.

Klyuchnikov I.G. Supercompiler HOSC: proof of correctness. KIAM Preprint 
№ 31, Moscow, 2010.
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Proving equivalence of expressions

The basic idea

A.P. Lisitsa and M. Webster. Supercompilation for Equivalence Testing in 
Metamorphic Computer Viruses Detection. Proceedings of the First 
International Workshop on Metacomputation in Russia, 2008
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Proving equivalence of expressions

The basic idea

It works only if SC preserves equivalence

(Multi-result supercompilation.)
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Example: proof of equivalence
(how to prove?)

data List a = Nil | Cons a (List a);

map = \f xs -> case xs of {
  Nil -> Nil;
  Cons y ys -> Cons (f y) (map f ys);
};

comp = \f g x -> f (g x);

Proposition:

map f (map g xs) = map (comp f g) xs
 
(for any functions f and g, any list, even infinite one)
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Example: proof of equivalence
(normalizing by supercompilation!)

letrec h = \ys -> case ys of {
    Nil -> Nil;
    Cons z zs -> Cons (f (g z)) (h zs);
} in h xs

map f (map g xs) map (comp f g) xs
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Proof of equivalence

Pros:
• Non-terminating calculations do not need special 

consideration
• Reasoning about infinite data
• Equivalence of functions may be prooved

Alternative approach: 
equals(f(x), g(x)) => True
 
 
 
Ilya Klyuchnikov and Sergei Romanenko. Proving the Equivalence of Higher-Order Terms 
by Means of Supercompilation. In: Proceedings of the Seventh International Andrei Ershov 
Memorial Conference: Perspectives of System Informatics. LNCS 5947. 2009. 
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HOSC 0: Testing on examples

HOSC 0 proved only 6 of 25 simple 
equalities (from the first chapter)
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HOSC 1: proven equivalences
HOSC 1, using extended homeomorphic embedding was 
able to prove 25 of 25 equivalences
concatR xs == foldR NilR catR xs
listR (cross (P f g)) (zipR xs ys) 
    == uncurry zipR (cross (P (listR f) (listR g)) (P xs ys))
listR f xs == foldR NilR (\a x -> Cons (f a) x) xs
filterR p xs 
    == listR outl (filterR outr (uncurry zipR (pair (P id (listR p)) xs)))
listL (listL f) (inits xs) == inits (listL f xs)
listR f (concatR xs) == concatR (listR (listR f) xs)
mult1 x y == foldN Z (\n -> plus1 n y) x
mult1 x y == foldN Z (plus y) x
mult x y == foldN Z (plus x) y
plus1 x y == foldN y succ x
plus x y == foldN x succ y
filterR p xs == 
    foldR NilR (curry (cond (compose p outl) (uncurry cons) outr)) xs
filterR p xs == foldR1 NilR (cond (compose p outl) (uncurry cons) outr) xs
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HOSC 1: proven equivalences
filterR p xs 
    == (compose (foldR NilR catR) 
        (foldR NilR (\a x -> Cons ((cond p wrapR nilpR) a) x))) xs
filterR p xs == 
    (compose (foldR NilR catR) (listR (cond p wrapR nilpR))) xs
filterR p xs == (compose concatR (listR (cond p wrapR nilpR))) xs
lengthR xs == (compose sum (listR (\x -> S Z))) xs
lengthR xs == foldR Z (\a n -> (S n)) xs
appendL xs ys == foldL1 snoc xs ys
appendL xs ys == foldL id (\f x a -> snoc (f a) x) ys xs
appendR xs ys == foldR id (\x f a -> cons x (f a)) xs ys
appendL xs ys == foldL xs snoc ys
appendR xs ys == foldR ys cons xs
appendL (appendL xs ys) zs == appendL xs (appendL ys zs)
appendR (appendR xs ys) zs == appendR xs (appendR ys zs)
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Application: checking monadic laws

1. join (return a) k == k a
2. join m (\x -> join (k x) h) == join (join m k) h
3. join m return == id m
4. fmap (compose f g) xs == compose (fmap f) (fmap g) xs
5. fmap id xs == id xs
6. fmap f xs == join xs (compose return f)
7. join mzero f == mzero
8. bind v mzero == mzero
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Application: checking monadic laws

Maybe monad

data Maybe a = Just a | Nothing;
compose = \f g x ->  f (g x);
return = \x -> Just x;
fmap = \f m -> case m of {
    Nothing -> Nothing;
    Just x -> Just (f x);
};
join = \m k -> case m of {
    Nothing -> Nothing;
    Just x -> k x;
};
id = \m -> case m of {
    Nothing -> Nothing;
    Just x -> Just x;
};
gid = \x -> x;
bind = \m k -> join m (\x -> k);
mzero = Nothing;
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Application: checking monadic laws

Maybe Monad
1.  +
2.  +
3.  +
4.  +
5.  +
6.  +
7.  +
8.  -

List Monad
1.  +
2.  +
3.  +
4.  +
5.  +
6.  +
7.  +
8.  -

State Monad
1.  +
2.  +
3.  +
4.  +
5.  +
6.  +
7.  +
8.  +
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Detecting "errors"
8. Maybe

bind v mzero mzero

case  v  of {
  Nothing  -> Nothing; 
  Just s -> Nothing;}

Nothing

8. List
bind v mzero mzero

letrec f= \x -> case x of { 
   Nil  -> Nil; 
   Cons y z -> (f z); } 
in f v

Nil

=?=

=?=

Residual program may supply useful information
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Higher-level supercompilation
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Higher-level supercompilation
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Higher-level supercompilation
Base supercompiler:

def scp0(e) = {
...
if whistle(e1, e2)
  abstract(e1, e2)
...
}

The second-level supercompiler:

def scp1(e) = {
...
if whistle(e1, e2)
  e3 = findEquiv(e1)
  if e3 != null
    replace(e1, e3)
  else
    abstract(e1, e2)
...
}
def findEquiv(e1) = {
  for c <- candidates(e1)
    if scp0(e1) == scp0(c)
       return c
  return null
}
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The correctness of higher-level 
supercompilation
Theorem (Sands, 1996). When performing fold/unfold 
transformation it is safe to replace e1 by e2 if e2 is a strong 
improvement of e1.

If e2 if a strong improvement of e1, then
(e1, e2) is an improvement lemma
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Comparing costs of computations
Annotating a partial process tree

Propagating annotations into a residual program
letrec f=*\v → case v of { Z → True;
  S p → *case p of { Z→ (letrec g = *\w → case w of { 
        Z → False; 
        S t → * case t of {Z → True; S z → g z;};} in g n; 
     S x → f x;};} in f n
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The correctness of higher-level 
supercompilation
Theorem (Klyuchnikov). Let 

prog'1 - a residual expression for e1
prog'2 - a residual expression for e2

If prog'1 syntactically equivalent to prog'2 (ignoring 
annotations) and prog'2 is embedded into prog'1 by 
annotations then e2 is a strong improvement of e1 and it is 
correct to replace e1 на e2. when constructing a partial process 
tree.
 
Ilya Klyuchnikov and Sergei Romanenko. Towards Higher-Level 
Supercompilation. In: Second International Workshop on Metacomputation in 
Russia. 2010. 
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Higher-level supercompilation

Example 1. Accumulating parameter. Input.

data Bool = True | False;
data Nat = Z | S Nat;

even (double x Z) where

even = \x -> case x of { Z -> True; S x1 -> odd x1;};
odd = \x -> case x of { Z -> False; S x1 -> even x1;};

double = \x y -> 
    case x of { Z -> y; S x1 -> double x1 (S (S y));};
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Higher-level supercompilation

Example 1. Accumulating parameter.

Classical supercompilation:
letrec f=\w2 p2-> case  w2  of {
  Z -> letrec g=\r2-> case  r2  of {
    S r -> case r of {Z  -> False; S z2 -> g z2;};
    Z -> True;} in g p2;
  S z -> f z (S (S p2));} in f x Z

Higher-level supercompilation:
case  x  of {
  Z -> True;
  S y1 -> letrec f=\t2-> 
     case  t2  of {Z  -> True; S u2 -> f u2;} 
    in f y1; 
}
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Higher-level supercompilation

Example 2 - Non-linear expression. Input

data Bool = True | False;
data Nat = Z | S Nat;

or (even m) (odd m) where

even = \x -> case x of { Z -> True; S x1 -> odd x1;};
odd = \x -> case x of { Z -> False; S x1 -> even x1;};

or = \x y -> case x of { True -> True; False -> y;};
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Higher-level supercompilation

Example 2 - Non-linear expression

Classical supercompilation:
letrec f = \v-> case v of { Z -> True;
    S p -> case p of { Z -> letrec g = \w-> 
    case w  of {Z  -> False; 
    S t -> case t of {Z  -> True; S z -> g z;});} in g m;
    S x -> f x;};} in f m

Higher-level supercompilation:
letrec f=\w-> case w of {
    Z -> True; 
    S x -> case x  of { Z  -> True; S z -> f z;};
  } in f m
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Higher-level supercompilation

Example 3 - Improving the asymptotic. Non-optimal parser. 
Complexity: O(n2)
data Symbol = A | B;
data List a = Nil | Cons a (List a);
data Option a = Some a | None; 

match doublea word where 

match = \p i -> p (eof return) i;
return = \x -> Some x;
doublea = or nil (join a (join doublea a));
or = \p1 p2 next w -> case p1 next w of { Some w1 -> Some w1;
    None -> p2 next w;};
nil = \next w -> next w;
join = \p1 p2 next w -> p1 (p2 next) w;
a = \next w -> case w of { Nil -> None;
    Cons s w1 -> case s of { A -> next w1; B -> None;};};
b = \next w -> case w of { Nil -> None;
    Cons s w1 -> case s of { A -> None; B -> next w1;};};
eof = \next w -> case w of { Cons s w1 -> None; Nil -> next Nil;};
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Higher-level supercompilation
Example 3 - Improving the asymptotic. Classical 
supercompilation: -  complexity: O(n2)

case  word  of {
  Cons y9 t5 ->
    case  word  of { Cons w13 w9 ->
        case  w13  of {
          A  -> (letrec f=(\r21-> (\s21-> case  r21  of { Cons r3 y5 ->
            case  r3  of { A  -> case  (s21 y5)  of { Some z7 -> (Some z7);
                            None  ->
                              ((f y5)
                                (\s8->
                                  case  s8  of {
                           Cons z5 s18 -> case  z5  of { A  -> (s21 s18); B  -> None; };
                                    Nil  -> None;
                                  }));
                          };
                        B  -> None;
                      }; Nil  -> None;}))
            in
              ((f w9) (\v16-> case  v16  of { Cons t6 w2 -> None; Nil  -> (Some Nil); })));
          B  -> None;
        }; Nil  -> None;
    };Nil  -> (Some Nil);
}
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Higher-level supercompilation

Example 3 - Improving the asymptotic. Higher-level 
supercompilation. Complexity: O(n)

letrec
  f=(\s14->
    case  s14  of {
      Cons z12 y8 ->
        case  z12  of {
          A  -> case  y8  of { 
            Cons s3 s2 -> case  s3  of { A  -> (f s2); B  -> None; }; 
            Nil  -> None; };
          B  -> None; };
      Nil  -> (Some Nil);
    }
in
  f word
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Higher-level supercompilation

Example 3 - Improving the asymptotic

Input:
p = a p a | empty.

Output:
p' = a a p' | empty.

 Equivalence of grammars is shown!
The general idea: 
• Coding knowledge as a program.
• Analysis of a program by transformations.
• Result: inference and proving of properties of objects being modeled
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Higher-level supercompilation

Theorem (Sørensen, 1994). Classical positive supercompiler 
for a call-by-name language cannot improve the asymptotic of 
a program.

We have shown that a higher-level supercompiler is able to 
improve he asymptotic of a program.
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Equivalence of abstract machines 

Two approches:
• State-transition function together with a ‘driver loop’.
• Collection of mutually tail-recursive transition functions 

mapping a given configuration to a final state.

Olivier Danvy, Kevin Millikin. On the equivalence between 
small-step and big-step abstract machines: a simple 
application of lightweight fusion.
Information Processing Letters. Volume 106, Issue 3 
(April 2008).
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Equivalence of abstract machines

data Nat = Z | S Nat;
data List a = Nil | Cons a (List a);
data Term = Var Nat | Lam Term | App Term Term;
data Val = Clo Term (List Val);
data RC = RC0 | RC1 RC Term (List Val) | RC2 Val RC;
data Conf = Eval Term (List Val) RC | Apply RC Val;
data State = Final Val | Inter Conf;

lookup = \i env ->
  case env of {
    Cons n env1 ->
      case i of {
        Z -> n;
        S i1 -> lookup i1 env1;
      };
  };

CEK-machine: definitions
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Equivalence of abstract machines

drive (Inter (Eval t Nil RC0)) where

move = \conf -> case conf of {
  Eval t e c ->
    case t of {
      Var i -> Inter (Apply c (lookup i e));
      Lam t0 -> Inter (Apply c (Clo t0 e));
      App t0 t1 -> Inter (Eval t0 e (RC1 c t1 e));};
  Apply c v ->
    case c of {
      RC0 -> Final v;
      RC1 c1 t1 e -> Inter (Eval t1 e (RC2 v c1));
      RC2 v1 c1 -> case v1 of { 
        Clo t2 e2 -> Inter (Eval t2 (Cons v e2) c1);};};};

drive = \state -> case state of {
  Final v -> v;
  Inter conf -> drive (move conf);};

CEK-machine: small-step semantics
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Equivalence of abstract machines

eval t Nil RC0 where

eval = \t e c ->
  case t of {
    Var i -> apply c (lookup i e);
    Lam t1 -> apply c (Clo t1 e);
    App t0 t1 -> eval t0 e (RC1 c t1 e);
  };

apply = \t v ->
  case t of {
    RC0 -> v;
    RC1 c1 t1 e1 -> eval t1 e1 (RC2 v c1);
    RC2 v1 c1 -> case v1 of { 
      Clo t2 e2 -> eval t2 (Cons v e2) c1; 
    };
  };

CEK-machine: big-step semantics
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Equivalence of abstract machines

Danvy, Millikin:

Normalization by supercompilation
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Mind-map of methods

68Friday, July 2, 2010



Contribution
• The algorithm of higher-order supercompilation is developed. This 

algorithm takes into account properties of bound variables:
o The homeomorphic embedding relation was extended.
o A new algorithm of generalization of coupled expressions.
o Proof of termination, proof of correctness.

• A method of higher-level supercompilation (capable to improve the 
asymptotic behavior of programs):
o The algorithm for detecting the equivalence of higher-order 

expressions.
o The algorithm for detecting improvement lemmas

• Applicability of suggested methods to program analysis by 
supercompilation was demonstrated.
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