
Russian Academy of Sciences
Ailamazyan Program Systems Institute

Second International

Valentin Turchin Memorial

Workshop on Metacomputation

in Russia

Proceedings
Pereslavl-Zalessky, Russia, July 1–5, 2010

Pereslavl-Zalessky



УДК 004.42(063)
ББК 22.18

В874

Second International Valentin Turchin Memorial Workshop on Meta-
computation in Russia // Proceedings of the second International Valentin
Turchin Memorial Workshop on Metacomputation in Russia. Pereslavl-Zalessky,
Russia, July 1-5, 2010 / Edited by A. P. Nemytykh. — Pereslavl Zalessky: Aila-
mazyan University of Pereslavl, 2010, 186 p. — 978-5-901795-21-7

Второй международный памяти В.Ф. Турчина семинар по метавычис-
лениям в России // Сборник трудов Второго международного памяти В.Ф. Тур-
чина семинара по метавычислениям в России, г. Переславль-Залесский, 1-5 июля
2010 г. / Под редакцией А. П. Немытых. — Переславль-Залесский: «Университет
города Переславля», 2010, 186 с. (англ). — 978-5-901795-21-7

c© Ailamazyan Program Systems Institute of RAS 2010
Институт программных систем им. А.К. Айламазяна
РАН

c© Ailamazyan University of Pereslavl 2010
НОУ «Институт программных систем —

”
Университет города Переславля“» им. А.К. Айламазяна

ISBN 978-5-901795-21-7



Valentin Turchin
(1931-2010)





Workshop Organization

Honorary Chairman

Valentin Turchin , Professor Emeritus of The City University of New York, USA

Workshop Chair

Sergei Abramov, Program Systems Institute of RAS, Russia

Program Committee Chair

Andrei Nemytykh, Program Systems Institute of RAS, Russia

Program Committee

Mikhail Bulyonkov, A.P. Ershov Institute of Informatics Systems of RAS, Russia
Robert Glück, University of Copenhagen, Denmark
Geoff Hamilton, Dublin City University, Republic of Ireland
Viktor Kasyanov, A.P. Ershov Institute of Informatics Systems of RAS, Russia
Andrei Klimov, Keldysh Institute of Applied Mathematics of RAS, Russia
Alexei Lisitsa, Liverpool University, Great Britain
Johan Nordlander, Lule̊a University of Technology, Sweden
Sergei Romanenko, Keldysh Institute of Applied Mathematics of RAS, Russia
Claudio Russo, Microsoft Research Cambridge, United Kingdom
Peter Sestoft, IT University of Copenhagen, Denmark
Morten Sørensen, Formalit, Denmark

Invited Speakers

Neil D. Jones, Professor emeritus of University of Copenhagen, Denmark
Simon Peyton-Jones, Microsoft Research Ltd, Cambridge, England

Sponsoring Institutions

The Russian Academy of Sciences

Russian Foundation for Basic Research (№ 10-07-06029-г)

The Scientific and Technical Project SKIF-GRID of the Union of Russia and
Belarus





Table of Contents

Programming in Biomolecular Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen

Approaches to Supercompilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Simon Peyton Jones

Preliminary Report on a Self-Applicable Online Partial Evaluator for
Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Robert Glück

A Graph-Based Definition of Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
G. W. Hamilton, G. Mendel-Gleason

Strengthening Supercompilation For Call-By-Value Languages . . . . . . . . . . 64
Peter A. Jonsson, Johan Nordlander

Towards Higher-Level Supercompilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Ilya Klyuchnikov, Sergei Romanenko

A Simple Supercompiler Formally Verified in Coq . . . . . . . . . . . . . . . . . . . . . 102
Dimitur Krustev

Supercompilation and Normalisation By Evaluation . . . . . . . . . . . . . . . . . . . 128
Gavin E. Mendel-Gleason, Geoff Hamilton

A Method of Verification of Functional Programs Based on Graph Models 146
Andrew M. Mironov

Supercompilation and the Reduceron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Jason S. Reich, Matthew Naylor, Colin Runciman

A Note on three Programming Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
N. V. Shilov





Programming in Biomolecular Computation

Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen?

{hartmann,neil,simonsen}@diku.dk
Department of Computer Science, University of Copenhagen (DIKU),

Copenhagen, Denmark

Abstract. Our goal is to provide a top-down approach to biomolec-
ular computation. In spite of widespread discussion about connections
between biology and computation, one question seems notable by its ab-
sence: Where are the programs? We introduce a model of computa-
tion that is evidently programmable, by programs reminiscent of low-level
computer machine code; and at the same time biologically plausible: its
functioning is defined by a single and relatively small set of chemical-like
reaction rules. Further properties: the model is stored-program: programs
are the same as data, so programs are not only executable, but are also
compilable and interpretable. It is universal: all computable functions
can be computed (in natural ways and without arcane encodings of data
and algorithm); it is also uniform: new “hardware” is not needed to solve
new problems; and (last but not least) it is Turing complete in a strong
sense: a universal algorithm exists, that is able to execute any program,
and is not asymptotically inefficient.
A prototype model has been implemented (for now in silico on a conven-
tional computer). This work opens new perspectives on just how com-
putation may be specified at the biological level.

Keywords: biomolecular, computation, programmability, universality.

1 Biochemical universality and programming

It has been known for some time that various forms of biomolecular computation
are Turing complete [7,8,10,12,25,29,32,33]. The net effect is to show that any
computable function can be computed, in some appropriate sense, by an instance
of the biological mechanism being studied. However, the arguments for Turing
universality we have seen are less than compelling from a programming perspec-
tive. This paper’s purpose is to provide a better computation model where the
concept of “program” is clearly visible and natural, and in which Turing com-
pleteness is not artificial, but rather a natural part of biomolecular computation.
We begin by evaluating some established results on biomolecular computational
completeness from a programming perspective; and then constructively provide
an alternative solution. The new model seems biologically plausible, and usable
for solving a variety of problems of computational as well as biological interest.

? c© 2010 Published by Elsevier Science B. V.
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It should be noted that while our model can support full parallelism (as often
seen in biologically-inspired computing), it is not the foci of the paper, which
are completeness and universality: we consider one program running on one,
contiguous piece of data.

The central question: can program execution take place in a biological
context? Evidence for “yes” includes many analogies between biological processes
and the world of programs: program-like behavior, e.g., genes that direct protein
fabrication; “switching on” and “switching off”; processes; and reproduction.

A clarification from the start: this paper takes a synthetic viewpoint, con-
cerned with building things as in the engineering and computer sciences. This is
in contrast to the ubiquitous analytic viewpoint common to the natural sciences,
concerned with finding out how naturally evolved things work.

The authors’ backgrounds lie in the semantics of programming languages,
compilers, and computability and complexity theory; and admittedly not biology.
We focus on the synthetic question can, rather than the usual natural scientists’
analytical question does.

Where are the programs? In existing biomolecular computation models
it is very hard to see anything like a program that realises or directs a computa-
tional process. For instance, in cellular automata the program is expressed only
in the initial cell configuration, or in the global transition function. In many bio-
computation papers the authors, given a problem, cleverly devise a biomolecular
system that can solve this particular problem. However, the algorithm being im-
plemented is hidden in the details of the system’s construction, and hard to see,
so the program or algorithm is in no sense a “first-class citizen”. Our purpose is
to fill this gap, to establish a biologically feasible framework in which programs
are first-class citizens.

2 Relation to other computational frameworks

We put our contributions in context by quickly summarising some other compu-
tational completeness frameworks. Key dimensions: uniformity; programma-
bility; efficiency; simplicity; universality; and biological plausibility. (Not every
model is discussed from every dimension, e.g., a model weak on a dimension
early in the list need not be considered for biological plausibility.)

Circuits, BDDs, finite automata. While well proven in engineering prac-
tice, these models don’t satisfy our goal of computational completeness. The
reason: they are non-uniform and so not Turing complete. Any single instance
of a circuit or a BDD or a finite automaton has a control space and memory that
are both finite. Consequently, any general but unbounded computational problem
(e.g., multiplying two arbitrarily large integers) must be done by choosing one
among an infinite family of circuits, BDDs or automata.

The Turing machine. Strong points. Highly successful for theoretical pur-
poses, the Turing model is uniform; there exists a clear concept of “program”;
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and the “universal Turing machine” from 1936 is the seminal example of a self-
interpreter. The Turing model has fruitfully been used to study computational
complexity problem classes as small as ptime and logspace.

Weak points. Turing machines do not well model computation times small
enough to be realistically interesting, e.g., near-linear time. The inbuilt “data
transport” problems due to the model’s one-dimensional tape (or tapes, on a
multi-tape variant) mean that naturally efficient algorithms may be difficult to
program on a Turing machine. E.g., a time O(n) algorithm may suffer asymp-
totic slowdown when implemented on a Turing machine, e.g., forced to run in
time O(n2) because of architectural limitations. A universal Turing machine
has essentially the same problem: it typically runs quadratically slower than the
program it is simulating. Stiull greater slowdowns may occur if one uses smaller
Turing complete languages, for instance the counter or Minsky register machines
as used in [7,8,12,22].

Other computation models with an explicit concept of program.
Numerous alternatives to the Turing machine have been developed, e.g., the
Tag systems studied by Post and Minsky, and a variety of register or counter
machines. Closer to computer science are recursive functions; the λ-calculus;
functional programming languages such as lisp; and machines with randomly
addressable memories including the ram and, most relevant to our work, its
stored-program variant the rasp [19]. These models rate well on some of the key
dimensions listed above. However they are rather complex; and were certainly
not designed with biological plausibility in mind.

Cellular automata. John von Neumann’s pathbreaking work on cellu-
lar automata was done in the 1940s, at around the time he also invented to-
day’s digital computer. In [29] computational completeness was established by
showing that any Turing machine could be simulated by a cellular automaton.
Further, it was painstakingly and convincingly argued that a cellular automaton
could achieve self-reproduction.Von Neumann’s and subsequent cellular automa-
ton models, e.g., life and Wolfram’s models[15,8,32], have some shortcomings,
though. Though recent advances have remedied the lack of asynchronous com-
putations [23], a second, serious drawback is the lack of programmability: once
the global transition function has been selected (e.g., there is only one such in
life) there is little more that the user of the system can do; the only degree of
freedom remaining is to choose the initial configuration of cell states. There is
no explicit concept of a program that can be devised by the user. Rather, any
algorithmic ideas have to be encoded in a highly indirect manner, into either the
global transition function or into the initial cell state configuration; in a sense,
the initial state is both program and input, but in the zoo of cellular automata
proven to be universal, there seems to be no clear way to identify which parts
of the initial state of the CA corresponds to, say, a certain control structure in
a program, or a specific substructure of a data structure such as a list.

Biomolecular computation frameworks. We will see that the Turing-
typical asymptotic slowdowns can be avoided while using a biomolecular comput-
ing model. This provides an advance over both earlier work on automata-based
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computation models (Turing machines, counter machines, etc.), and over some
other approaches to biomolecular computing

A number of contributions exist in this area; a non-exhaustive list:
[1,3,7,10,8,11,12,17,20,21,25,26,30,31,5,33] The list is rather mixed: Several of
the articles describe concrete finite-automaton-like computations, emphasising
their realisation in actual biochemical laboratory contexts. As such their empha-
sis is not on general computations but rather on showing feasibility of specific
computations in the laboratory. Articles [7,8,12,20,33] directly address Turing
completeness, but the algorithmic or programming aspects are not easy to see.

How our approach is different: Contrary to several existing models,
our atomic notion (the “blob”) carries a fixed amount of data and has a fixed
number of possible interaction points with other blobs. Further, one fixed set
of rules specify how local collections of blobs are changed. In this sense, our
setup resembles specific cellular automata, e.g. Conway’s game of life where
only the initial state may vary. Contrary to cellular automata, there is both
programs and data are very clearly identified ensembles of blobs. Further, we use
a textual representation of programs closely resembling machine code such that
each line essentially corresponds to a single blob instruction with parameters and
bonds. The resulting code conforms closely to traditional low-level programming
concepts, including use of conditionals and jumps.

Outline of the paper: Section 3 introduces some notation to describe
program execution. Section 4 concerns the blob model of computation, with an
explicit program component. Section 5 relates the blob model to more traditional
computation models, and Section 6 concludes. Appendix A has more discussion
of computational completeness; and Appendix B shows how a Turing machine
may be simulated in the blob model – doable within a constant slowdown be-
cause of the flexibility of blobs when considered as data structures. Appendix C
discusses the blob model’s realisability in 3-dimensional space.

3 Notations: direct or interpretive program execution

What do we mean by a program (roughly)? An answer: a set of instructions
that specify a series (or set) of actions on data. Actions are carried out when
the instructions are executed (activated,. . . ) Further, a program is software, not
hardware. Thus a program should itself be a concrete data object that can be
replaced to specify different actions.

Direct program execution: write [[program]] to denote the meaning or
net effect of running program. A program meaning is often a function from data
input values to output values. Expressed symbolically:

[[program]](datain) = dataout

The program is activated (run, executed) by applying the semantic function
[[ ]]. The task of programming is, given a desired semantic meaning, to find a
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program that computes it. Some mechanism is needed to execute program, i.e.,
to compute [[program]]. This can be done either by hardware or by software.

Interpretive program execution: Here program is a passive data object,
but it is now activated by running the interpreter program. (Of course, some
mechanism will be needed to run the interpreter program, e.g., hardware or
software.) An equation similar to the above describes the effect of interpretive
execution:

[[interpreter]](program, datain) = dataout

Note that program is now used as data, and not as an active agent. Self-
interpretation is possible and useful [18]; the same value dataout can be com-
puted by:

[[interpreter]](interpreter, (program, datain)) = dataout

4 Programs in a biochemical world

Our goal is to express programs in a biochemical world. Programming assump-
tions based on silicon hardware must be radically re-examined to fit into a bio-
chemical framework. We briefly summarize some qualitative differences.

– There can be no pointers to data: addresses, links, or unlimited list
pointers. In order to be acted upon, a data value must be physically adjacent
to some form of actuator. A biochemical form of adjacency: a chemical bond
between program and data.

– There can be no action at a distance: all effects must be achieved via
chains of local interactions. A biological analog: signaling.

– There can be no nonlocal control transfer, e.g., no analog to GOTOs or
remote function/procedure calls. However some control loops are acceptable,
provided the “repeat point” is (physically) near the loop end. A biological
analog: a bond between different parts of the same program.

– On the other hand there exist available biochemical resources to tap, i.e.,
free energy so actions can be carried out, e.g., to construct local data, to
change the program control point, or to add local bonds into an existing
data structure. Biological analogs: Brownian movement, ATP, oxygen.

The above constraints suggest how to structure a biologically feasible model
of computation. The main idea is to keep both program control point and the
current data inspection site always close to a focus point where all actions occur.
This can be done by continually shifting the program or the data, to keep the
active program and data always in reach of the focus. The picture illustrates this
idea for direct program execution.
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Program p Data d'
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APB: :ADB*

Running program p, i.e., computing [[p]](d)

= Focus point for control and data

(connects the APB and the ADB)

* = program-to-data bond

4.1 The Blob model

We take a very simplified view of a (macro-)molecule and its interactions, with
abstraction level similar to the Kappa model [12,7,14]. To avoid misleading detail
questions about real molecules we use the generic term “blob” for an abstract
molecule. A collection of blobs in the biological “soup” may be interconnected
by two-way bonds linking the individual blobs’ bond sites.

A program p is (by definition) a connected assembly of blobs. A data value
d is (also) by definition a connected assembly of blobs. At any moment during
execution, i.e., during computation of [[p]](d) we have:

– One blob in p is active, known as the active program blob or APB.
– One blob in d is active, known as the active data blob or ADB.
– A bond *, between the APB and the ADB, is linked at bond site 0 of each.

The data view of blobs: A blob has several bond sites and a few bits of
local storage limited to fixed, finite domains. Specifically, our model will have
four bond sites, identified by numbers 0, 1, 2, 3. At any instant during execution,
each can hold a bond – that is, a link to a (different) blob; or a bond can hold
⊥, indicating unbound.

In addition each blob has 8 cargo bits of local storage containing Boolean
values, and also identified by numerical positions: 0, 1, 2, . . . , 7. When used as
program, the cargo bits contain an instruction (described below) plus an acti-
vation bit, set to 1. When used as data, the activation bit must be 0, but the
remaining 7 bits may be used as the user wishes.

A blob with 3 bond sites bound and one unbound:

0

1⊥ 2
3&%
'$

Since bonds are in essence two-way pointers, they have a “fan-in” restriction: a
given bond site can contain at most one bond (if not ⊥).

The program view of blobs: Blob programs are sequential. There is no
structural distinction between blobs used as data and blobs used as program.
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A single, fixed set of instructions is available for moving and rearranging the
cursors, and for testing or setting a cargo bit at the data cursor. Novelties from
a computer science viewpoint: there are no explicit program or data addresses,
just adjacent blobs. At any moment there is only a single program cursor and a
single data cursor, connected by a bond written * above.

Instructions, in general. The blob instructions correspond roughly to
“four-address code” for a von Neumann-style computer. An essential difference,
though, is that a bond is a two-way link between two blobs, and is not an address
at all. It is not a pointer; there exists no address space as in a conventional
computer. A blob’s 4 bond sites contain links to other instructions, or to data
via the APB-ADB bond *.

For program execution, one of the 8 cargo bits is an “activation bit”; if 1, it
marks the instruction currently being executed. The remaining 7 cargo bits are
interpreted as a 7-bit instruction so there are 27 = 128 possible instructions in
all. An instruction has an operation code (around 15 possibilities), and 0, 1 or 2
parameters that identify single bits, or bond sites, or cargo bits in a blob. See
table below for current details. For example, SCG v c has 16 different versions
since v can be one of 2 values, and c can be one of 8 values.

Why exactly 4 bonds? The reason is that each instruction must have a bond
to its predecessor; further, a test or “jump” instruction will have two successor
bonds (true and false); and finally, there must be one bond to link the APB and
the ADB, i.e., the bond * between the currently executing instruction and the
currently visible data blob. The FIN instruction is a device to allow a locally
limited fan-in.

A specific instruction set (a bit arbitrary). The formal semantics of
instruction execution are specified precisely by means of a set of 128 biochemical
reaction rules in the style of [12]. For brevity here, we just list the individual
instruction formats and their informal semantics. Notation: b is a 2-bit bond site
number, c is a 3-bit cargo site number, and v is a 1-bit value.

Numbering convention: the program APB and the data ADB are linked by
bond * between bond sites 0 of the APB and the ADB. An instruction’s predeces-
sor is linked to its bond site 1; bond site 2 is the instruction’s normal successor;
and bond site 3 is the alternative “false” successor, used by jump instructions
that test the value of a cargo bit or the presence of a bond.
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Instruction Description Informal semantics (:=: is a two-way interchange)

SCG v c Set CarGo bit ADB.c := v; APB := APB.2
JCG c Jump CarGo bit if ADB.c = 0 then APB := APB.3

else APB := APB.2
JB b Jump Bond if ADB.b = ⊥ then APB := APB.3

else APB := APB.2
CHD b CHange Data ADB := ADB.b; APB := APB.2
INS b1 b2 INSert new bond new.b2 :=: ADB.b1;

new.b1 :=: ADB.b1.bs; APB := APB.2
Here “new” is a fresh blob,
and “bs” is the bond site to which ADB.b1
was bound before executing INS b1 b2.

SWL b1 b2 SWap Links ADB.b1 :=: ADB.b2.b1; APB := APB.2
SBS b1 b2 SWap Bond Sites ADB.b1 :=: ADB.b2; APB := APB.2
SWP1 b1 b2 Swap bs1 on linked ADB.b1.1 :=: ADB.b2.1; APB := APB.2
SWP3 b1 b2 Swap bs3 on linked ADB.b1.3 :=: ADB.b2.3; APB := APB.2
JN b1 b2 Join b1 to linked b2 ADB.b1 :=: ADB.b1.b2; APB := APB.2
DBS b Destination bond site Cargo bits 0,1 := bond site number

of destination for ADB.b
FIN Fan IN APB := APB.2

(bond site 3 is an alternative predecessor)
EXT EXiT program

An example in detail: the instruction SCG 1 5, as picture and as a
rewrite rule. SCG stands for “set cargo bit”. The effect of instruction SCG 1

5 is to change the 5-th cargo bit of the ADB (active data blob) to 1. First, an
informal picture to show its effect:

�
�	APB a
1

�
�	⊥APB′ a
0

*

�
�
�
S

�
�	?5 ADB

Program Data

⇓

APB

APB′

ADB
�
�	⊥a
0

�
�	a1 ��
��

��
��

*�
�
�
S

�
�	15

Program Data

Note: the APB-ADB bond * has moved: Before execution, it connected APB
with ADB. After execution, it connects APB′ with ADB, where APB′ is the
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next instruction: the successor (via bond S) of the previous APB. Also note that
the activation bit has changed: before, it was 1 at APB (indicating that the APB
was about to be executed) and 0 at ADB′. Afterwards, those two bit values have
been interchanged.

Syntax: Code the above instruction as an 8-bit string:

a︷︸︸︷
1

SCG︷︸︸︷
100

v︷︸︸︷
1

c︷︸︸︷
101 .

Here activation bit a = 1 indicates that this is the current instruction (about to
be executed). Operation code SCG (happens to be) encoded as 100; and binary
numbers are used to express the new value: v = 1, and the number of the cargo
bit to be set: c = 5.

The instruction also has four bond sites: ∗PS⊥. Here P is a bond to the
predecessor of instruction SCG 1 5, S is a bond to its successor, and bond site
3 is not used. The full instruction, with 8 cargo sites and four bond sites can be
written in form1: B[11001101](∗PS⊥).

Semantics: Instruction SCG 1 5 transforms the three blobs APB, APB′

and ADB as in the picture above. This can be expressed more exactly using a
rewrite rule as in [12] that takes three members of the blob species into three
modified ones. For brevity we write “ - ” at bond sites or cargo sites that are not
modified by the rule. Remark: the labels APB, ADB, etc. are not part of the
formalism, just labels added to help the reader.

APB︷ ︸︸ ︷
B[1 100 1 101](∗ -S - ),

APB′
︷ ︸︸ ︷
B[0 - - - - - - -](⊥S - - ),

ADB︷ ︸︸ ︷
B[0 - - - -x - - ](∗ - - - )

⇒
B[0 100 1 101](⊥ -S - )︸ ︷︷ ︸

APB

, B[1 - - - - - - -](⊥S - - )︸ ︷︷ ︸
APB′

, B[0 - - - - 1 - - ](∗ - - - )︸ ︷︷ ︸
ADB

5 The blob world from a computer science perspective

First, an operational image: Any well-formed blob program, while running, is
a collection of program blobs that is adjacent to a collection of data blobs,
such that there is one critical bond (*) that links the APD and the ADB (the
active program blob and the active data blob). As the computation proceeds, the
program or data may move about, e.g., rotate as needed to keep their contact
points adjacent (the APB and the ADB). For now, we shall not worry about the
thermodynamic efficiency of moving arbitrarily large program and data in this
way; for most realistic programs, we assume them to be sufficiently small (on
the order of thousands of blobs) that energy considerations and blob coherence
are not an issue.

5.1 The blob language

It is certainly small: around 15 operation codes (for a total of 128 instructions if
parameters are included). Further, the set is irredundant in that no instruction’s
effect can be achieved by a combination of other instructions. There are easy

1 B stands for a member of the blob “species”.
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computational tasks that simply cannot be performed by any program without,
say, SCG or FIN.

There is certainly a close analogy between blob programs and a rudimentary
machine language. However a bond is not an address, but closer to a two-way
pointer. On the other hand, there is no address space, and no address decoding
hardware to move data to and from memory cells. An instruction has an unusual
format, with 8 single bits and 4 two-way bonds. There is no fixed word size for
data, there are no computed addresses, and there are no registers or indirection.

The blob programs has some similarity to LISP or SCHEME, but: there are
no variables; there is no recursion; and bonds have a “fan-in” restriction.

5.2 What can be done in the blob world?

In principle the ideas presented and further directions are clearly expressible
and testable in Maude or another tool for implementing term rewriting systems,
or the kappa-calculus [7,9,12,14]. Current work involves programming a blob
simulator. A prototype implementation has been made, with a functioning self-
interpreter.

The usual programming tasks (appending two lists, copying, etc.) can be
solved straightforwardly, albeit not very elegantly because of the low level of
blob code. Appendix B shows how to generate blob code from a Turing machine,
thus establishing Turing-completeness.

It seems possible to make an analogy between universality and self-reproduc-
tion that is tighter than seen in the von Neumann and other cellular automaton
approaches. It should now be clear that familiar Computer Science concepts such
as interpreters and compilers also make sense also at the biological level, and
hold the promise of becoming useful operational and utilitarian tools.

5.3 Self-interpretation in the blob world

The figure of Section 4 becomes even more interesting when a program is exe-
cuted interpretively, computing [[interpreter]](p, d).

Interpreter Program p�
�
�

?
�
�
�



?

??�
�
�

?

?

Data d

The interpreter’s data is p and d together

We have developed a “blob universal machine”, i.e., a self-interpreter for the
blob formalism that is closely analogous to Turing’s original universal machine.
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6 Contributions of This Work

We have for the first time investigated the possibility of programmable bio-level
computation. The work sketched above, in particular the functioning of blob
code, can all be naturally expressed in the form of abstract biochemical reaction
rules. Further, we have shown molecular computation to be universal in a very
strong sense: not only can every computable function be computed by a blob
program, but this can all be done using a single, fixed, set of reaction rules: it is
not necessary to resort to constructing new rule sets (in essence, new biochemical
architectures) in order to solve new problems; it is enough to write new programs.

The new framework provides Turing-completeness efficiently and without
asymptotic slowdowns. It seems possible to make a tighter analogy between
universality and self-reproduction than by the von Neumann and other cellular
automaton approaches.

It should be clear that familiar Computer Science concepts such as inter-
preters and compilers also make sense also at the biological level, and hold the
promise of becoming useful operational and utilitarian tools.
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A More on Turing completeness

How to show Turing completeness of a computation framework. This is
typically shown by reduction from another problem already known to be Turing
complete. Notation: let L and M denote languages (biological, programming,

whatever), and let [[p]]
L

denote the result of executing L-program p, for example
an input-output function computed by p. Then we can say that language M is
at least as powerful as L if

∀p ∈ L−programs ∃q ∈M−programs ( [[p]]
L

= [[q]]
M

)

A popular choice is to let L be some very small Turing complete language,
for instance Minsky register machines or two-counter machines (2CM). The next
step is to let M be a biomolecular system of the sort being studied. The technical
trick is to argue that, given any L-instance of (say) a 2CM program, it is possible
to construct a biomolecular M -system that faithfully simulates the given 2CM.

Oddly enough, Turing completeness is not often used to show that certain
problems can be solved by M -programs; but rather only to show that, say, the
equivalence or termination problems of M -programs are algorithmically undecid-
able because they are undecidable for L, and the properties are preserved under
the construction. This discussion brings up a central issue:

Simulation as opposed to interpretation. Arguments to show Turing
completeness are (as just described) usually by simulation: for each problem
instance (say a 2CM) one somehow constructs a biomolecular system such that
. . . (the system in some sense solves the problem). However, in many papers for
each problem instance the construction of the simulator is done by hand, e.g., by
the author writing the article. In effect the existential quantifier in ∀p∃q([[p]]L =

[[q]]
M

) is computed by hand. This phenomenon is clearly visible in papers on
cellular computation models: completeness is shown by simulation rather than
by interpretation.

In contrast, Turing’s original “Universal machine” simulates by means of
interpretation: a stronger form of imitation, in which the existential quantifier
is realised by machine. Turing’s “Universal machine” is capable of executing an
arbitrary Turing machine program, once that program has been written down on
the universal machine’s tape in the correct format, and its input data has been
provided. Our research follows the same line, applied in a biological context:
we show that simulation can be done by general interpretation, rather than by
one-problem-at-a-time constructions.
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Self-interpretation without asymptotic slowdown. The blob self-inter-
preter overcomes a limitation that seems built-in to the Turing model. Analysis
of its running time reveals that the time taken to interpret one blob instruction
is bounded by a constant that is independent of the program being interpreted.
Intuitively, there are two reasons for this: First, there are no variables, point-
ers, or other features that add program-dependent amounts of time to the cen-
tral self-interpretion loop. Second, the fact that every transfer of control in the
interpreted program is to an adjacent program blob means that no program-
dependent amount of time is spent on fetching the next instruction.

One consequence is that constant time factors do matter: the “linear hierar-
chy” results developed in [19] (Section 19.3 for the I language) also hold for the
blob language. (The linear hierarchy result sounds intuitively obvious and natu-
ral, but in fact does not hold for many of the traditional models of computation,
in particular does not hold for Turing machines with arbitrarily large alphabets
or number of tapes.)

B Turing completeness of the blob model

We prove that any one-tape Turing machine with a single read/write head may
be simulated by a blob program. The tape contents are always finite and enclosed
between a left endmarker C and a right endmarker B.

B.1 Turing machine syntax

A Turing machine is a tuple Z = ({0, 1}, Q, δ, qstart, qhalt). The tape and input
alphabet are {0, 1}. (Blanks are not included, but may be encoded suitably by
bits.) Q is a finite set of control states including distinct start and halting states
qstart, qhalt ∈ Q. The transition function has type

δ : {0, 1,C,B} ×Q→ A×Q

where an action is any A ∈ A = {L,R,W0,W1}. Notation: we write a Turing
machine instruction as

δ(q, b)→ (A, r)

meaning “In state q, reading bit b, perform action A and move to state r”.
Actions L,R,W0,W1 mean informally “move Left, move Right, Write 0, Write
1”, respectively. For simplicity we assume that Turing machines may not both
move and write on the tape in the same atomic step. (A “write-and-move” action
may easily be implemented using two states and two steps.)

We also assume that every Turing machine satisfies the following consistency
assumptions:

– If δ(q,C) → (A, r) is an instruction, then A ∈ {R} (i.e. the machine never
moves to the left of the left endmarker and cannot overwrite the endmarker).

– If δ(q,B) → (A, r) then A ∈ {L,W0,W1} (i.e. the machine never moves to
the right of the right endmarker, but can overwrite the endmarker).
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Definition 1. Let M be a Turing machine. The state graph of M is the directed
graph where the nodes are the states of M and there is a directed edge from q to
r annotated (b, A) if there is an instruction δ(q, b)→ (A, r).

B.2 Turing machine semantics

A total state has the form q
C b1 . . . bi . . . bn B

where the bj are tape symbols, and q is a control state. We define the tape
contents of the machine to be everything enclosed between C and B.

The Turing machine defines a one-step transition relation between total states
in the expected way (not spelled out here). Tapes may only grow to the right, not
the left. We assume that if there is an instruction of the form δ(q,B)→ (W0, r)
or δ(q,B) → (W1, r) (i.e. the right endmarker is overwritten), then the tape
is automatically extended to the right with a new endmarker to the immediate
right of the previous endmarker.

Remark: the tape contents will always be finite after a finite number of com-
putation steps.

Input/Output : A Turing machine Z computes a partial function

[[Z]] : {0, 1}∗ ⇀ {0, 1}∗

– Input : The machine is in its start state with the tape head on the tape cell
to the immediate right of the left endmarker C. The input is the contents of
the tape.

– Output : The machine is in its halt state. The output is the contents of the
tape.

B.3 Compiling a Turing machine into a blob program

We describe a way to compile any Turing machine Z = ({0, 1}, Q, δ, qstart, qhalt)
into blob program code code(Z) that simulates it. Compilation of a Turing ma-
chine into blob code is as follows:

– Generate blob code for each instruction δ(q, b)→ (A, r).
– Collect blob code for all the states into a single blob program.

Before describing the compilation algorithm, we explain how the blob code re-
alises a step-by-step simulation of the Turing machine Z.

Turing machine representation by blobs At any time t in its computation,
the Turing machine’s tape b1 . . . bi . . . bn will represented by a finite sequence
B1 . . . Bi . . . Bn of blobs. If at time t the Turing machine head is scanning tape
symbol bi, the active data blob will be the blob Bi. Arrangement: each Bi is
linked to its predecessor via bond site 1, and to its successor via bond site 2.
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The Turing machine’s control state will correspond to the active program blob
in code(Z).

The cargo bits of the “data blobs” are used to indicate the contents of the
the tape cell:

– Cargo bit 0 is unused in the simulation.
– Cargo bit 1 is used to hold the bit occupied by the tape cell (if the blob

represents either C or B, the contents of cargo bit 1 is irrelevant).
– Cargo bit 2 is ’1’ iff the blob represents the left endmarker C.
– Cargo bit 3 is ’1’ iff the blob represents the right endmarker B.

Syntax of the generated code We will write the generated blob target pro-
gram as straightline code with labels. For every instruction, the “next” blob code
instruction to be executed is the one linked to the active program blob by the
latter’s “successor” bond site 2. Thus, in

SCG 0 5

EXT

the blob corresponding to SCG 0 5 has its bond site 2 linked to the “predecessor”
bond site 1 of the blob corresponding to EXT.

Code generation for each state Let q 6= qhalt be a state. The four possible
kinds of transitions on state q are:

δ(q, 0)→ (A0, q0)
δ(q, 1)→ (A1, q1)
δ(q,C)→ (AL, qL)
δ(q,B)→ (AR, qR)

where q0,q1,qL,qR ∈ Q, A0,A1 ∈ {L,R,W0,W1}, and AL,AR ∈ {L,W0,W1}.
We generate code for q as follows. For typographical reasons, C = EL and

B = ER. The action code notations [A0] etc, is explained below, as is the label
notation <label>. The initial FIN code may be safely ignored on the first reading.

Generate i-1 FIN // Assume program port 2 is always "next" operation

// Each FIN is labeled as noted below

// The last FIN is bound (on its bond site 2) to

// the blob labeled ’Q’ below.

Q: JCG 2 QLE // If 1, We’re at left tape end

// By convention, bond site 3 of the APB is

// bound to the blob labeled QLE

JCG 3 QRE // If 1, We’re at right tape end

JCG 1 Q1 // We’re not at any end. If ’0’ is scanned, move along

// (on bond site 2),

// otherwise a ’1’ is scanned, jump to Q1
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// (on bond site 3)

[A0] // Insert code for action A0

FIN qA0q0 // Go to appropriate fanin before q0 (on bond site 2)

Q1: [A1] // Insert code for action A1

FIN qA1q1 // Go to appropriate fanin before q1 (on bond site 2)

QLE: [AL] // Insert code for AL

FIN qELALqL // Go to appropriate fanin before qL (on bond site 2)

QRE: R[AR] // Insert code for AR (with the R[ ]-function)

FIN ERARqR // Go to appropriate fanin before qR (on bond site 2)

// Code for q end

Code for qhalt:

Generate i-1 FIN // Assume program port 2 is "next" operation always

// Each FIN is labeled as noted below

// The last FIN is bound (on its bond site 2) to

// the blob labeled ’Qh’ below.

Qh: EXT

The JCG instructions test the data blob Bi to see which of the four possible
kinds of transitions should be applied. Codes [A0], [A1], [AL], R[AR] simulate
the effect of the transition, and the FIN after each in effect does a “go to” to
the blob code for the Turing machine’s next state. (This is made trickier by the
fan-in restrictions, see Section B.3 below.)

Two auxiliary functions We use two auxiliary functions to generate code:

[] : {L,R,W0,W1} −→ blobcode

and
R[] : {L,W0,W1} −→ blobcode

Function [] is used for code generation on arbitrary tape cells, and R[] for
code generation when the Turing machine head is on the right end marker where
some housekeeping chores must be performed due to tape extension.

Code generation for instructions not affecting the right end of the
tape

[W0]

SCG 0 1 // Set tape cell content to 0

[W1]
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SCG 1 1 // Set tape cell content to 1

[L]

CHD 1 // Set ADB to previous blob (move tape left)

[R]

CHD 2 // Set ADB to next blob (move tape right)

Code generation for instructions that can extend the tape

R[W0]

SCG 0 3 // Current blob is no longer at right tape end

INS 2 1 // Insert new blob at bond port 2 on ADB

// (new tape cell). New blob is bound at site 1.

CHD 2 // Change ADB to new blob (move head right)

SCG 1 3 // New blob is at the right end of the tape

CHD 1 // Change ADB to original blob (move head left)

SCG 0 1 // Write a ’0’ in the tape cell (as per W0).

R[W1]

SCG 0 3 // Current blob is no longer at right tape end

INS 2 1 // Insert new blob at bond port 2 on ADB

// (new tape cell). New blob is bound at site 1

CHD 2 // Change ADB to new blob (move head right)

SCG 1 3 // New blob is right tape end

CHD 1 // Change ADB to original blob (move head left)

SCG 1 1 // Write a ’1’ in the tape cell (as per W1)

R[L]

R[L] = [L] // Move to the left

// TM does not move right at right tape end.

Control flow in the generated blob code A technical problem in code
generation. We now explain the meaning of the somewhat cryptical comments
such as “Go to appropriate fanin before q1” in Section B.3, and notations
such as qA0q0.

The problem: while a pointer-oriented language allows an unbounded number
of pointers into the same memory cell, this is not true for the blob structures
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(the reason is that a bond is intended to model a chemical connection between
two molecules). This is a “fan-in” restriction on program (and data) syntax.

A consequence: blob program code may not contain more than one control
transfer to a given instruction, unless this is done by a bond site different from
the usual “predecessor” site 1. The purpose of the instruction FIN is to allow
two entry points: one as usual by bond site 1, and a second by bond site 3.

The initial FIN code generated of Section B.3. This concerns the entry
points into blob code for a Turing state q. Let i be the number of directed edges
to q in the state graph (i.e., the number of “go to’s” to q).

If i ≤ 1, we generate no fanin blobs.

Otherwise, we generate i − 1 fanin blobs before the code generated for q;
these handle the i transitions to q. The blobs bound to the fanin nodes occur in
the code generated for other states (perhaps from q to itself). For each transition
δ(q′, b) → (A, q), a blob in the code generated for q′ is bound to a single fanin
blob for q. The fanin blob generated above, before the generated code for state
q, is labeled by q’bAq.

C Dimensionality limitations

Limitation to three dimensions. The physical world imposes a dimension-
ality requirement we have not yet addressed: data and program code cannot be
packed with a density greater than that allowed by three-dimensional Euclidean
space. The idea of a biologically plausible computing model that must work in
3-space provokes several interesting questions.

Realisability in 3-space: In the blob model, following a chain of k bonds
from the active data blob (at any time in a computation) should give access to
at most O(k3) blobs. This is not guaranteed by the blob model as presented
above; indeed, a blob program could build a complete 3-ary tree of depth k and
containing 3k blobs at distance k. This structure could not be represented in 3-
space with our restrictions, and still have the intended semantic structure: that
any two blobs linked by a bond should be adjacent in the biological “soup”.

On dimensional limits in other computation models. The usual Tur-
ing machine has a fixed number of 1-dimensional tapes (though k-dimensional
versions exist, for fixed k). Cellular automata as in [29,8,32] have a fixed 2-
dimensional architecture. Dimensionality questions are not relevant to Minsky-
style machines with a fixed number of registers, e.g., the two-counter machine.

Machines that allow computed addresses and indirection, e.g., the ram, rasp,
etc., have no dimensionality limitations at all, just as in the “raw” blob model:
traversing a chain of k bonds from one memory can give access to a number of
cells exponential in k (or higher if indexing is allowed).

3D complexity classes? The well-known and well-developed Turing-based
computational complexity theory starts by restricted programs’ running time
and/or space. An possible analogy would be to limit the dimensionality of the
data structures that a program may build during a computation.



28 Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen

Pursuing the analogy, the much-studied complexity class ptime is quite large,
indeed so large that dimensionality makes no difference: on any traditional model
where data dimensionality makes sense, it would be an easy exercise to show
that ptime = ptime3D. What if instead we study the class lintime of problems
solvable in linear time (as a function of input size)? Alas, this smaller, realistically
motivated class is not very robust for Turing machines, as small differences
in Turing models can give different versions of lintime (Sections 18, 19, 25.6
in [19]). It seems likely though that the lintime class for blob machines is
considerably more robust.

Conjecture: lintime3D ( lintime on the blob model.
Another interesting question: does self-interpretation cause a need for

higher dimensionality? We conjecture that this is not so for any one fixed inter-
preted program; but that diagonalisation constructions can force the necessary
dimensionality to increase. This appears to be an excellent direction for future
work.
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Abstract. My student Max Bolingbroke and I have been studying su-
percompilation, with a view to making GHC into a supercompiler. In this
talk I’ll describe various approaches that we have explored, and focus on
the one we are pursuing right now. A well-known practical challenge in
supercompilation is over-specialisation and code explosion. I will present
some ideas we have developed to tackle this problem.
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Abstract. This is a preliminary report on a self-applicable online partial
evaluator for a flowchart language with recursive calls. Self-application of
the partial evaluator yields generating extensions that are as efficient as
those reported in the literature for offline partial evaluation. This result is
remarkable because partial evaluation folklore has indicated that online
partial evaluation techniques unavoidably lead to overgeneralized gener-
ating extensions. The purpose of this paper is not to argue which line of
partial evaluation is better, but to show how the problem can be solved
by recursive polyvariant specialization. The online partial evaluator, its
techniques and implementation, are presented in a complete way. Full
self-application according to the Futamura projections is demonstrated.

1 Introduction

This paper reports on the design and implementation of a self-applicable on-
line partial evaluator for a flowchart language with recursive calls. The partial
evaluator does not require partial evaluation techniques that are stronger than
those already known, but another organization of the algorithm. This result is
remarkable because partial evaluation folklore has indicated that online tech-
niques unavoidably lead to overgeneralized generating extensions [13, Ch. 7].
Offline partial evaluation was invented specifically to solve the problem of self-
application [14]. The purpose of this investigation is not to argue which line of
partial evaluation is better, but to show how the problem can be solved. Self-
application of the online partial evaluator converts interpreters into compilers
and produces a self-generating compiler generator, all of which are as efficient as
those known from the literature on offline partial evaluation (e.g., [10,13,14,17]).

The offline partial evaluator mix for a flowchart language described by Go-
mard and Jones [10] is well suited as the basis for the online partial evaluator
because their partial evaluator does not follow the binding-time annotations of
a subject program, but bases its decisions whether to interpret or residualize
flowchart commands on a division of the program variables into static and dy-
namic ones, which was precomputed by a monovariant binding-time analysis.
Another important advantage is that partial evaluation for flowchart languages

? Part of this work was performed while the author was visiting the National Institute
of Informatics (NII), Tokyo.
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p ::= ((x∗) (l) (b+)) (program)
b ::= (l a∗ j) (basic block)
a ::= (x := e) (assignment)
| (x := call l) (call)

j ::= (goto l) (unconditional jump)
| (if e l l) (conditional jump)
| (return e) (return)

e ::= (o u∗) (simple expression)
o ::= hd | tl | cons | + | - | = | < | . . . (primitive operator)
u ::= x | 'v (operator argument)
x ∈ Name v ∈ Value l ∈ Label

Fig. 1. Scheme representation of Flowchart programs with recursive calls.

Call
σ b̀lock Γ (l)⇒ (〈halt, v〉, σ′)

σ àssign x := call l ⇒ σ[x 7→v]

Fig. 2. Inference rule extending Hatcliff’s operational semantics of FCL [11,
Fig. 6]

has been very well documented (e.g., [2–4, 10, 11, 13]), which should make our
results easily accessible and comparable.

Turning mix into an online partial evaluator required two modifications:
(1) the division of the program variables is maintained as an updatable set of
variable names at specialization time, and (2) the partial evaluator is rewritten
to perform recursive polyvariant specialization [7] instead of the usual itera-
tive version with an accumulating parameter (pending list). This required an
extension of the flowchart language with a simple recursion mechanism. Full
self-application according to the Futamura projections is demonstrated by con-
verting an interpreter for Turing-machines [10] into a compiler, a universal parser
for regular languages [2] into a parser generator, and the partial evaluator itself
into a compiler generator. Self-application of the online partial evaluator can
also generate generating extensions that are more optimizing than those pro-
duced by the original mix. The generating extension of the Ackermann function
can specialize and precompute the function at program generation time, thereby
producing fully optimized residual programs.

Throughout this paper, we assume that readers are familiar with the basics
of partial evaluation, e.g., as presented by Jones et al. [13, Part II]. Use is made
as much as possible of existing partial evaluation techniques for flowchart lan-
guages [10,11] to focus the attention on essential differences, instead of irrelevant
details.
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((m n) (ack)

((ack (if (= m 0) done next))

(next (if (= n 0) ack0 ack1))

(done (return (+ n 1)))

(ack0 (n := 1)

(goto ack2))

(ack1 (n := (- n 1))

(n := (call ack m n))

(goto ack2))

(ack2 (m := (- m 1))

(n := (call ack m n))

(return n)) ))

A(m,n) =


n+ 1 if m = 0
A(m− 1, 1) if n = 0
A(m− 1, A(m,n− 1)) otherwise

Fig. 3. Ackermann program and its function

2 A Simple Imperative Language with Recursive Calls

Flowchart is a simple imperative language [10, 11] with variables, assignments,
and jumps (Fig. 1). A program consists of a sequence of labeled basic blocks.
As is customary, the set of values and labels is that of the Lisp S-expressions.
The operational semantics of the language is identical to the one that has been
formalized and published by Hatcliff [11], except that we add a simple command
for calling blocks:

x := call l

The command executes the block labeled l in a copy of the current store σ
and assigns the return value to the variable x in the original store σ. (In an
actual implementation this only requires copying the variables that are live at
the entry of block l.) The command allows recursive calls, has no side-effects, and
requires only one additional inference rule in Hatcliff’s operational semantics [11,
Fig. 6]. The inference rule in Fig. 2 is parameterized with respect to Γ , a partial
function that maps labels to blocks in a program, and updates the store σ at
x with the return value v, which is marked by halt. Due to its simplicity, the
command is easy to interpret and specialize. For the sake of brevity, we refer
to the extended language as Flowchart. The syntax can easily be generalized to
calls with argument expressions.

An implementation of the Ackermann function using the call command is
shown in Fig. 3. For the sake of readability, we annotate each call with the
variables that are live at the called block and write integer constants without
quotes. The program is defined recursively, takes the non-negative integers m and
n as input, and starts program execution at block ack. The double recursion on
both m and n cannot be expressed in terms of primitive recursion.

For the sake of conciseness we shall write many of the programs in pseudocode
using constructs such as while . . . do and pattern matching case . . . of, which are
to be regarded as structured ways of writing Flowchart programs. Fig. 4 shows
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procedure evalpp :: pp × vs × program → value
block := lookup(pp,program);
while block is not empty do
begin command := first-command(block); block := rest(block);

case command of
x := rhs: case rhs of

call pp: vs := vs[x 7→ call evalpp(pp,vs,program)];
e: vs := vs[x 7→ evalexp(e,vs)];

if e pp’ pp’’: if evalexp(e,vs) = true
then block := lookup(pp’, program)
else block := lookup(pp’’,program);

goto pp: block := lookup(pp,program);
return e: value := evalexp(e,vs);

end;
return value

Fig. 4. A self-interpreter for Flowchart written in pseudocode

the self-interpreter evalpp for Flowchart written in pseudocode. It inputs a label
pp, a store vs, and a program program, and returns the value of the program.
Fragments of the interpreted program are written in italics for clarity. The self-
interpreter makes liberal use of primitive operators such as lookup for finding a
block pp in a program and evalexp for evaluating an expression e in a store vs.
Note the simplicity of interpreting a call by recursively calling the self-interpreter.

3 Online Partial Evaluation Techniques

A partial evaluator for Flowchart takes values for the static parameters of a
program and tries to precompute as many commands as possible. Program code
is generated for commands that cannot be precomputed (they are residualized).
A specialization strategy is said to be online if the values computed at the time
of specialization can affect the choice of action taken; otherwise a strategy is
said to be offline [13, Ch. 4.4.7]. The main advantage of an online strategy is
that it can exploit static information that becomes available at specialization
time, while an offline strategy bases its decisions on the results of a binding-time
analysis (BTA) performed before specialization.

We now explain the specialization principles behind the online partial eva-
luator for Flowchart and in which way it differs from the offline partial evaluator.

3.1 Generating Code for Commands

Fig. 5 shows the specialization of an assignment x := e by an offline partial
evaluator. The binding time of variable x determines whether the assignment is
interpreted or residualized. If x is dynamic, e is reduced to e’ by constant folding
using the static values in the store vs and an assignment x := e’ is generated. If x
is static, e is evaluated in vs and the value of x in vs is updated. The congruence
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Command Done at specialization time Generated code

x := e
(if x is dynamic)

e’ := reduce(e,vs,division) x := e’

x := call pp
(if x is dynamic)

x := call (pp,vs)

x := e
(if x is static)

vs := vs[x 7→ evalexp(e,vs)]

x := call pp
(if x is static)

vs := vs[x 7→ call evalpp(pp,vs,program)]

Fig. 5. Offline code generation for assignments

Command Done at specialization time Generated code

x := e
(if e is dynamic)

e’ := reduce(e,vs,division);
division := division \ {x} x := e’

x := call pp
(if a var live at pp
is dynamic)

division := division \ {x} x := call (pp,vs)

x := e
(if e is static)

vs := vs[x 7→ evalexp(e,vs)];
division := division ∪ {x}

x := call pp
(if all vars live at pp
are static)

vs := vs[x 7→ call evalpp(pp,vs,program)];
division := division ∪ {x}

Fig. 6. Online code generation for assignments

Command Done at specialization time Generated code

if e pp’ pp”
(if e is dynamic)

e’ := reduce(e,vs,division) if e’ (pp’,vs) (pp”,vs)

if e pp’ pp”
(if e is static
and value = true)

value := evalexp(e,vs) goto (pp’,vs)

if e pp’ pp”
(if e is static
and value = false)

value := evalexp(e,vs) goto (pp”,vs)

goto pp goto (pp,vs)

return e e’ := reduce(e,vs,division); return e’

Fig. 7. Online and offline code generation for control flow (no transition com-
pression)

of the binding times calculated by the BTA guarantees that e can be evaluated
in vs whenever x is static [12]. In the case of mix, which uses a monovariant BTA,
the same division is valid at all program points. The division can be represented
by a set division that contains the names of all static variables. Variables that
are not in this set are dynamic.
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Likewise, x := call pp is interpreted or residualized depending on the binding
time of x. If x is dynamic, the call is residualized as x := call (pp,vs) and later a
residual block (pp,vs), that is block pp specialized with respect to vs, is generated.
Otherwise, the call is static and interpreted by the self-interpreter evalpp (Fig. 4).

In an online partial evaluator the division is not known until specialization
time. Thus, instead of using the binding time of x in an assignment x := e, the
binding time of e determines whether the assignment is interpreted or residual-
ized. The binding time of x is changed accordingly by adding it to or removing
it from the division. Fig. 5 shows the partial evaluation of an assignment by
an online partial evaluator. The binding times of variables are determined and
propagated at specialization time and may affect the course of partial evaluation.

Similarly for x := call pp, except that the binding times of all variables that
are live at pp determine whether the assignment is interpreted or residualized.
If all live variables are static, the call is interpreted in vs and the return value
is assigned to x. Otherwise, an assignment x := call (pp,vs) is generated. The
division is updated according to the binding time of x.

In an online partial evaluator the binding time of a variable x on the left-hand
side of an assignment depends on the binding time of the expression or the call
on the right-hand side. Depending on the outcome, the division is updated at
specialization time. The division is not predetermined and can change during
partial evaluation.

Control flow commands Code generation without transition compression is shown
in Fig. 7. The partial evaluation of control flow commands is the same in online
and offline partial evaluation. However, as a consequence of the online treatment
of assignments, the decision taken by an online partial evaluator, namely whether
to residualize a conditional or to select one of the branches (pp’, pp”), depends on
the actual static values obtained from the assignments preceding the conditional.
Even though the only visible difference between code generation in an online
and offline partial evaluator is confined to the handling of assignments (Fig. 5
vs. Fig. 6), the process of partial evaluation proceeds quite differently.

Transition compression Residual programs produced by the code generation de-
scribed above often contain chains of trivial transitions (blocks consisting only of
goto commands), which makes them less readable. Transition compression can be
performed during partial evaluation by continuing code generation directly with
the commands in a block pp instead of generating goto pp (Fig. 7). Transition
compression can also be performed after partial evaluation in a post-processing
phase. The choice of the transition compression strategy does not affect the spe-
cialization strength or the self-applicability of the partial evaluators, only the
size of the residual programs which they generate.

3.2 Two Simple Polyvariant Specialization Algorithms

Program point specialization incorporates the values of the static variables into
a program point. In polyvariant block specialization [2] each block in a subject
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procedure polyloop :: pp × vs → code
pend := {(pp,vs)}; done := {}; code := {};
while pend is not empty do
begin

pick (pp,vs) ∈ pend;
code := code ∪ generate residual block for pp using the values in vs;
done := done ∪ {(pp,vs)}; pend := (pend ∪ successors(pp,vs)) \ done

end;
return code

Fig. 8. A simple iterative specialization algorithm polyloop [10]

procedure polyrec :: pp × vs × code → code
if no residual block labeled (pp,vs) exists in code then
begin

code := code ∪ generate residual block for pp using the values in vs;
let {(pp1,vs1), . . . , (ppn,vsn)} = successors(pp,vs);
code := call polyrec(pp1,vs1,code);
. . .
code := call polyrec(ppn,vsn,code)

end;
return code

Fig. 9. A simple recursive specialization algorithm polyrec [7]

program may be specialized with respect to several different static stores. A
residual block labeled (pp,vs) is the concatenation of the code generated for the
commands in block pp using the values in vs. Polyvariant block specialization
can be implemented in two different ways. Traditionally, an iterative method is
used that maintains a set of pending and done specialization tasks. We shall see
that a recursive method enables self-application of the online partial evaluator.

1. The iterative method in Fig. 8 maintains two sets, pend and done, to keep
track of the pairs (pp,vs) that are pending specialization and those for which
a residual block was already generated. Block specialization is repeated by
the while-loop until pend is empty. After generating a residual block, the set
of successor blocks, successors(pp,ss) = {(pp1,vs1), ..., (ppn,vsn)}, that is all
blocks that occur in conditionals and calls of the residual block (pp,vs), are
added to pend as new specialization tasks, unless they are already in done.
The residual blocks are collected in a set code and returned as the final result.
Iterative block specialization is invoked by call polyloop (pp0,vs0), where pp0
is the initial label of the subject program and vs0 is the initial static store.

2. The recursive method in Fig. 9 performs block specialization in a depth-first
manner without maintaining a set pend. The successor blocks are specialized
immediately after the specialization of a residual block is completed. The set
code of generated residual blocks doubles as set done. A block specialization
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(pp,vs) is only performed if the residual block for (pp,vs) does not yet exist in
code. Set code is single-threaded through the recursive calls to avoid repeat-
ing the generation of the same residual block. Consider as an example the
specialization of the two successors blocks (pp1,vs) and (pp2,vs) that occur
in a residual conditional if e (pp1,vs) (pp2,vs):

code := call polyrec(pp1,vs,code);
code := call polyrec(pp2,vs,code)

Recursive block specialization is invoked by call polyrec (pp0,vs0,{}), where
pp0 is the initial label, vs0 is the initial static store, and {} is the initially
empty set of residual blocks.

While the iterative version makes use of a data structure (pend) to keep track
of the specialization tasks, the recursive version relies on the call stack of the
implementation language. The iterative version corresponds to a tail-recursive
function where pend is an accumulating parameter. Functions with accumulating
parameters are notorious for being difficult to specialize.

3.3 Specializing the Simple Specialization Algorithms

The challenge of self-application is the specialization of the partial evaluation al-
gorithm by itself with respect to a known subject program and a known division,
but unknown values for the static store.

Consider first the iterative version. The set pend contains pairs of the form
(pp,vs) where pp is part of the subject program to which the partial evaluator
is specialized and vs is unknown. As a result, pend becomes dynamic. In offline
partial evaluation this problem was solved by precomputing the static set and
using a binding-time improvement, called “The Trick” [13], because the static set
contains finitely many components (pp,names-in-vs). The lookup of a block pp in
the subject program is implemented such that the dynamic pp is compared to all
possible values it can assume and specializes the block to all possible outcomes.
This trick is necessary to avoid generating trivial generating extensions in which
no specialization is performed. The set is precomputed by a BTA.

Now, consider the recursive version. The problem of losing the control infor-
mation does not arise because there is no set pend in which the program points pp
get dynamized. This depth-first specialization method enables the information
to be propagated statically and accurately, even in the case of self-application.
This is the method that we choose for the implementation of the self-applicable
online partial evaluator. It has the additional advantage that it can be used
regardless of whether code generation for commands is online or offline. It can
thus be used in self-applicable online and offline partial evaluators.

4 An Algorithm for Online Partial Evaluation

We now present the complete algorithm for online partial evaluation based on
the specialization techniques described above. It performs code generation with
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procedure onmix :: program × division × vs → code
pp := initial-label(program);
code := make-header(varlist(program,division),pp,vs);
return call pepoly(pp,vs,division,program,code)

procedure pepoly :: pp × vs × division × program × code → code
if ¬done(pp,vs,code)
then begin

code := new-block(code,pp,vs);
block := lookup(pp,program);
while block is not empty do
begin command := first-command(block); block := rest(block);
case command of
x := rhs: if static(vars(rhs,program),division)

then begin
case rhs of
call pp: vs := vs[x 7→ call evalpp(pp,vs,program)];
e: vs := vs[x 7→ evalexp(e,vs)];

division := division ∪ {x} end
else begin

case rhs of
call pp: code := call pepoly(pp,vs,division,program,code);

code := add-to(code,make-asg(x ,make-call(pp,vs)));
e: code := add-to(code,make-asg(x ,reduce(e,vs,division)));

division := division \ {x} end;
if e pp’ pp’’: if static(e,division)

then if evalexp(e,vs) = true
then block := lookup(pp’, program)
else block := lookup(pp’’,program)

else begin
code := call pepoly(pp’, vs,division,program,code);
code := call pepoly(pp’’,vs,division,program,code);
code := add-to(code,make-if(reduce(e,vs,division),(pp’,vs),(pp’’,vs)))

end;
goto pp: block := lookup(pp,program);
return e: code := add-to(code,make-return(reduce(e,vs,division)));

end (* while *)
end; (* then *)
return code

Fig. 10. The self-applicable algorithm for online partial evaluation of Flowchart

on-the-fly transition compression and recursive polyvariant block specialization.
The algorithm is given in pseudocode in Fig. 10.

The input to the main procedure onmix is a subject program program, a divi-
sion division of the parameters of the subject program, and a store vs containing
the values of the static parameters. The residual program code is returned as out-
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((n) (ack-0)

((ack-0 (if (= n 0) ack0-0 ack1-0))

(ack0-0 (return 3)) ; A(1, 1) = 3
(ack1-0 (n := (- n 1))

(n := (call ack-0 n))

(n := (call ack-1 n))

(return n))

(ack-1 (if (= n 0) ack0-1 ack1-1))

(ack0-1 (return 2)) ; A(0, 1) = 2
(ack1-1 (n := (- n 1))

(n := (call ack-1 n))

(n := (call ack-2 n))

(return n))

(ack-2 (return (+ n 1))) ))

Fig. 11. Ackermann program specialized with respect to m=2

put. Some initializations are performed before invoking pepoly, which performs
the actual specialization of the blocks in the subject program.

The procedure pepoly implements recursive polyvariant block specialization.
Block pp is specialized with respect to vs and division if no residual block exists
in code, which is tested by the primitive operator done. If the residual block
already exists, code is returned unchanged. Otherwise, the block is fetched from
the program by lookup and the header of the new block is added to code. The list
of commands is then specialized starting with the first command until it is empty.
The while-loop contains a case dispatch which generates code for the commands
as described above. The code is generated with transition compression as can
be seen in the case of specializing goto pp. For example, see the case of goto
pp: instead of generating a residual jump goto (pp,vs), specialization continues
at pp. The primitive operation vars(rhs,program) in the assignment case returns e,
if rhs = e, or an expression with the variables that are live at pp, if rhs = call pp.

The program in Fig. 11 is an example of a residual program produced by the
online partial evaluation algorithm. It was obtained by specializing the Acker-
mann program with respect to m = 2. No post-optimization was performed on
the residual program. Note that m is static throughout the entire Ackermann
program (Fig. 3), while variable n, which is initially dynamic, becomes static in
block ack0 due to assignment n := 1 and, consequently, the call to ack in ack2

is static and can be precomputed at specialization time. The result are the resi-
dual blocks ack0-0 and ack0-1 which return a constant. The same call to ack is
partially static if it is reached from ack1 where n is dynamic. The offline partial
evaluator mix [10] cannot perform this specialization (this would require a poly-
variant expansion of the original Ackermann program based on a polyvariant
binding-time analysis before applying mix). A post-optimization of the residual
program could replace (call ack-2 n) in ack1-1 by expression (+ n 1).

The online partial evaluator described in this paper has the specialization
strength of an offline partial evaluator with a polyvariant binding-time analysis
and monovariant return values. This functional equivalence is not surprising
because an offline partial evaluator with a maximally polyvariant binding-time
analysis can be as accurate as an online partial evaluator [3].
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4.1 Live Static Variables

The specialization of blocks with respect to dead static variables can cause con-
siderable code duplication in the residual programs [10]. This is even more critical
in an online partial evaluator because the division and the static store can grow
and shrink during partial evaluation. It is therefore essential to remove all dead
static variables from division and vs each time a new block is looked up in the
subject program. At the beginning of onmix before pepoly is called, the set of
live variables is determined for each block entry in a subject program and a
parameter containing this information is added to pepoly. For readability this
parameter and the operations restricting division and vs to the live variables after
each lookup were omitted in Fig. 10. However, these cleaning-up operations are
crucial for reducing the size of the generated residual program.

4.2 Self-Application

The classification of the three parameters of the main procedure onmix: program
and division are static and vs is dynamic. Operations that depend only on pro-
gram and division can be static, while all other operations that may depend on
vs are dynamic. In particular, the parameters pp, division and program remain
static and only vs and code are dynamic. The recursive method of polyvariant
block specialization keeps this essential information static (pp, division, program),
providing the key to successful self-application. Assignments that depend only
on static variables are fully evaluated when the partial evaluator us specialized
with respect to a subject program and do not occur in the generating extensions
produced by self-application. As an example, the important tests static are al-
ways static when the online partial evaluator is specialized. They will thus never
occur in the generating extensions. Also, a change of the transition compression
strategy does not affect the binding-time separation.

5 Specializing the Online Partial Evaluation Algorithm

A classic example is the specialization of a partial evaluator with respect to an
interpreter for Turing machines, which yields a compiler from Turing-machine
programs to the residual language of the partial evaluator, here Flowchart. We
used the same Turing-machine program and the same Turing-machine inter-
preter1 written in Flowchart as in publication [10, Fig. 3 and Fig. 4].

The first Futamura projection translates the Turing-machine program p into
a Flowchart program tar by specializing Turing-machine interpreter int with
respect to p by the online partial evaluator onmix:

tar = [[onmix]](int, p). (1)

1 A generalization operator was inserted to change the classification of the variable rep-
resenting the left-hand side of the tape from static to dynamic at Left := (GEN '()).
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The program tar is identical to the one produced by fcl-mix [10, Fig. 5] modulo
minor syntactic differences between the flowchart languages.

The second Futamura projection yields a compiler comp by self-application
of onmix:

comp = [[onmix]](onmix, int). (2)

The compiler comp translates Turing-machine programs into Flowchart. The
compiler is as efficient as the one presented in [10, App. II]. Compilation is done
recursively instead of iteratively due to the recursive polyvariant specialization
used in the specialized onmix. This is also an example how the structure of the
generated compilers can be influenced by specializing different partial evaluators.

The third Futamura projection yields a compiler generator cogen by double
self-application:

cogen = [[onmix]](onmix, onmix). (3)

The compiler generator is as efficient as the one reported for mix [10], except
that cogen performs recursive polyvariant specialization and produces generat-
ing extensions that also perform recursive polyvariant specialization. A compiler
generator produced by the third Futamura projection must be self-generating,
which is a necessary condition for its correctness [6], and so is cogen, which
produces a textually identical copy of itself when applied to onmix:

cogen = [[cogen]] onmix. (4)

Applying cogen to the Ackermann program ack yields a generating extension
ackgen, which produces residual programs of ack given a value for m, such as
the one shown in Fig. 11.

ackgen = [[cogen]] ack. (5)

Application of cogen to Bulyonkov’s universal parser for regular languages [2]
yields a parser generator parsegen that is comparable to the one reported in [7,
Fig. 5], if we disregard the fact that the one in this paper is produced by self-
application of onmix (or by cogen) and implemented in Flowchart, while the one
produced by quasi-self-application [7] is implemented in Scheme and arity raised
by the postprocessor of Unmix [17].

5.1 Overview of Performance

Tables 1 and 2 show some of the preliminary running times for a version of the
online specialization algorithm onmix. Program p and interpreter int are the
Turing-program and the Turing interpreter [10]. The data for ack is m = 2 and
n = 3. The running times are measured AMD Athlon cpu milliseconds using
Dr. Scheme version 4.1.3 under Windows XP Home Edition 2002 and include
garbage collection, if any. The running times are comparable to those reported
in the literature, albeit all Turing-related ratios are slightly smaller compared to
the results [10, Tab. 2], which were reported for a different hardware/software.
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Run Time Ratio

out = [[int]](p, d) 78
= [[tar]] d 16 4.9

tar = [[onmix]](int, p) 172
= [[comp]] p 47 3.7

comp = [[onmix]](onmix, int) 938
= [[cogen]] int 547 1.7

cogen = [[onmix]](onmix, onmix) 3016
= [[cogen]] onmix 907 3.3

Table 1. Turing interpreter

Run Time Ratio

out = [[ack]](m, n) 20
= [[ackm]] n 4 5

ackm = [[onmix]](ack, m) 168
= [[ackgen]] m 24 7

ackgen = [[onmix]](onmix, ack) 668
= [[cogen]] ack 496 1.3

Table 2. Ackermann program

6 Related Work

Conventional wisdom holds that only offline partial evaluators using a binding-
time analysis can be specialized into efficient generating extensions (e.g., [1]
and [13, Ch. 7]). Offline partial evaluation was invented specifically to solve this
problem. Mix was the first efficiently self-applicable partial evaluator [14].

The self-applicable partial evaluator presented in this paper makes use of
recursive polyvariant specialization [7] to ensure that the information needed for
specialization of blocks is not prematurely lost (dynamized) at program gener-
ator generation time. An implementation of recursive polyvariant specialization
by the author in 1993 is part of the Unmix distribution, an offline partial eva-
luator for a first-order subset of Scheme [17].

A higher-order pending list was used by a breadth-first inverse interpreter to
allow good specialization by the offline partial evaluator Similix [8, p. 15], but
requires a partial evaluator powerful enough to specialize higher-order values.
The self-application of an online partial evaluator for the λ-calculus without
polyvariant specialization was reported, but the compilers were of the “overly
general” kind [15]. A compromise strategy to self-application of online partial
evaluators is a hybrid ‘mixline’ approach to partial evaluation that distinguishes
between static, dynamic, and unknown binding times [13, Ch. 7.2.3] and [19,20].
A notable exception on the self-application of online specializers is V-Mix [5]
and [9]. A weaker online specializer was specialized by a stronger one [18].
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7 Conclusions and Future Work

We showed that not only offline partial evaluators, but also online partial eval-
uators can yield generating extensions by self-application that are as efficient as
those reported in the literature for offline partial evaluation. It is noteworthy
that this did not require partial evaluation techniques that are stronger than
those already known today, only a restructuring of the partial evaluator. Al-
though the design of the algorithm is based on a number of existing techniques,
their combination in a new and non-trivial way produced this synergetic effect.

Full self-application according to the Futamura projections was demonstrated
by implementing a non-trivial online partial evaluator for a flowchart language
extended with a simple recursion mechanism. Self-application produced gener-
ating extensions whose structure is as “natural and understandable” as in the
case of offline partial evaluation [16]. There was no loss of efficiency and no
overgeneralization. Self-application of the online partial evaluator can also lead
to generating extensions that are more optimizing than those produced by the
offline partial evaluators for the flowchart language, such as the generating ex-
tension of the Ackermann function. The algorithm for online partial evaluation,
the design, techniques and demonstration, were presented in a complete and
transparent way. Several attempts have been made previously, including work
by the author. We believe that the online partial evaluator for the flowchart
language presented in this paper provides the clearest solution to date. It is be-
lieved that the techniques presented here can be carried over to other recursive
programming languages. It is hoped that this investigation into self-application
can be a basis for novel partial evaluators and stronger generating extensions.
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A Appendix: Ackermann Generation Extension

Fig. 12 shows the complete generating extension of the Ackermann program in
Fig. 3 produced by self-application of the online partial evaluator onmix. Given a
value for m, the generating extension produces a residual program such as the one
shown in Fig. 11. No arity raising was performed, so the input to the generating
extension is a list initial-vs that contains a single value (m). The generating
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((initial-vs) (0-0)
((0-0 (vs := (initstore '(m) initial-vs))

(vs := (procrustes vs '(m)))
(code := (make-header '(n) 'ack vs))
(code := (call 1-0 vs code))
(return code))

(1-0 (if (done 'ack vs code) 2-0 3-0))
(2-0 (return code))
(3-0 (code := (new-block code 'ack vs))

(if (evalexp '(= m 0) vs) 16-0 17-0))
(16-0 (return (add-to code (list 'return (reduce '(+ n 1) vs '())))))
(17-0 (vs1 := (procrustes vs '(m)))

(vs2 := (procrustes vs '(m)))
(cond := (list 'if (reduce '(= n 0) vs '(m)) (cons 'ack0 vs1) (cons 'ack1 vs2)))
(vs := vs1)
(code := (call 1-1 vs code))
(vs := vs2)
(code := (call 1-2 vs code))
(return (add-to code cond)))

(1-1 (if (done 'ack0 vs code) 2-0 3-1))
(3-1 (code := (new-block code 'ack0 vs))

(vs := (assign 'n (evalexp '1 vs) vs))
(vs := (assign 'm (evalexp '(- m 1) vs) vs))
(value := (call 50-0 vs))
(vs := (assign 'n value vs))
(return (add-to code (list 'return (reduce 'n vs '(m n))))))

(1-2 (if (done 'ack1 vs code) 2-0 3-2))
(3-2 (code := (new-block code 'ack1 vs))

(code := (add-to code (list 'n ':= (reduce '(- n 1) vs '(m)))))
(vs1 := vs)
(vs := (procrustes vs '(m)))
(code := (call 1-0 vs code))
(code := (add-to code (list 'n ':= (make-call 'ack vs '(n)))))
(vs := vs1)
(vs := (assign 'm (evalexp '(- m 1) vs) vs))
(vs1 := vs)
(vs := (procrustes vs '(m)))
(code := (call 1-0 vs code))
(code := (add-to code (list 'n ':= (make-call 'ack vs '(n)))))
(vs := vs1)
(return (add-to code (list 'return (reduce 'n vs '(m))))))

(50-0 (if (evalexp '(= m 0) vs) 57-0 58-0))
(57-0 (return (evalexp '(+ n 1) vs)))
(58-0 (if (evalexp '(= n 0) vs) 57-1 58-1))
(57-1 (vs := (assign 'n (evalexp '1 vs) vs))

(vs := (assign 'm (evalexp '(- m 1) vs) vs))
(value := (call 50-0 vs))
(vs := (assign 'n value vs))
(return (evalexp 'n vs)))

(58-1 (vs := (assign 'n (evalexp '(- n 1) vs) vs))
(value := (call 50-0 vs))
(vs := (assign 'n value vs))
(vs := (assign 'm (evalexp '(- m 1) vs) vs))
(value := (call 50-0 vs))
(vs := (assign 'n value vs))
(return (evalexp 'n vs))) ))

Fig. 12. Generating extension of the Ackermann program (m static, n dynamic)

extension inherits several primitive operations from the actual implementation of
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onmix. The store vs is updated by primitive operation assign and the primitive
operation procrustes limits a store vs to the bindings of the variables listed
as its second argument. Code is generated and added to the residual program
by the primitive operations make-header, make-call, add-to, and new-block. The
primitive operations reduce and evalexp are identical to the ones in Sect. 3.1.

The blocks from 1-0 to 17-0, from 1-1 to 3-1, and from 1-2 to 3-2 produce
residual versions of the original blocks ack, ack0, and ack1, respectively. They
are specialized versions of procedure pepoly (Fig. 10) implemented in Flowchart.

The blocks from 50-0 to 58-1 are a complete implementation of the Acker-
mann function albeit with interpretive overhead inherited from the self-inter-
preter evalpp (Fig. 4), which is part of onmix. The entry block 50-0 is called in
block 3-1 to compute the value of the Ackermann function. It is instructive to
compare this implementation to the original program (Fig. 3). Even though this
version is slower than the original program, it allows the generating extension
to precompute the Ackermann function when generating a residual program.

Transition compression has duplicated some commands (e.g., the commands
of the original block ack2 are the last four commands of the blocks 57-1 and 58-1).
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Abstract. In this paper, we give a graph-based definition of the distil-
lation transformation algorithm. This definition is made within a similar
framework to the positive supercompilation algorithm, thus allowing for
a more in-depth comparison of the two algorithms. We find that the
main distinguishing characteristic between the two algorithms is that
in positive supercompilation, generalization and folding are performed
with respect to expressions, while in distillation they are performed with
respect to graphs. We also find that while only linear improvements in
performance are possible using positive supercompilation, super-linear
improvements are possible using distillation. This is because computa-
tionally expensive terms can only be extracted from within loops when
generalizing graphs rather than expressions.

1 Introduction

Supercompilation is a program transformation technique for functional languages
which can be used for program specialization and for the removal of intermediate
data structures. Supercompilation was originally devised by Turchin in what
was then the USSR in the late 1960s, but did not become widely known to
the outside world until a couple of decades later. One reason for this delay
was that the work was originally published in Russian in journals which were
not accessible to the outside world; it was eventually published in mainstream
journals much later [1,2]. Another possible reason why supercompilation did not
become more widely known much earlier is that it was originally formulated in
the language Refal, which is rather unconventional in its use of a complex pattern
matching algorithm. This meant that Refal programs were hard to understand,
and describing transformations making use of this complex pattern matching
algorithm made the descriptions quite inaccessible. This problem was overcome
by the development of positive supercompilation [3,4], which is defined over a
more familiar functional language. The positive supercompilation algorithm was
further extended by the first author to give the distillation algorithm [5,6].

In this paper we give a graph-based definition of distillation which we believe
gives the algorithm a more solid theoretical foundation. This definition is made
within a similar framework to the positive supercompilation algorithm, thus al-
lowing a more detailed comparison between the two algorithms to be made.
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There are two reasons why we do this comparison with positive supercompi-
lation rather than any other formulation of supercompilation. Firstly, positive
supercompilation is defined on a more familiar functional language similar to
that for which distillation is defined, thus facilitating a more direct comparison.
Secondly, the original supercompilation algorithm is less clearly defined and has
many variants, thus making comparison difficult. We find that the main distin-
guishing characteristic between the two algorithms is that in positive supercom-
pilation, generalization and folding are performed with respect to expressions,
while in distillation, they are performed with respect to graphs. We find that
super-linear improvements in performance are possible using distillation, but
not using positive supercompilation, because computationally expensive terms
can only be extracted from within loops when generalizing graphs rather than
expressions.

The remainder of this paper is structured as follows. In Section 2 we define
the higher-order functional language on which the described transformations are
performed. In Section 3 we define the positive supercompilation algorithm. In
Section 4 we define the distillation algorithm by using graphs to determine when
generalization and folding should be performed. In Section 5 we show how pro-
grams can be extracted from the graphs generated by positive supercompilation
and distillation, and Section 6 concludes.

2 Language

In this section, we describe the higher-order functional language which will be
used throughout this paper. The syntax of this language is given in Fig. 1.

prog ::= e0 where f1 = e1 . . . fk = ek Program

e ::= v Variable
| c e1 . . . ek Constructor
| f Function Call
| λv .e λ-Abstraction
| e0 e1 Application
| case e0 of p1 ⇒ e1 | · · · | pk ⇒ ek Case Expression

p ::= c v1 . . . vk Pattern

Fig. 1. Language Syntax

Programs in the language consist of an expression to evaluate and a set of func-
tion definitions. The intended operational semantics of the language is normal
order reduction. It is assumed that erroneous terms such as (c e1 . . . ek ) e and
case (λv.e) of p1 ⇒ e1 | · · · | pk ⇒ ek cannot occur. The variables in the pat-
terns of case expressions and the arguments of λ-abstractions are bound; all
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other variables are free. We use fv(e) and bv(e) to denote the free and bound
variables respectively of expression e. We write e ≡ e′ if e and e′ differ only in
the names of bound variables. We require that each function has exactly one def-
inition and that all variables within a definition are bound. We define a function
unfold which replaces a function name with its definition.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons
has arity 2. We allow the usual notation [] for Nil , x : xs for Cons x xs and
[e1, . . . , ek] for Cons e1 . . . (Cons ek Nil).

Within the expression case e0 of p1 ⇒ e1 | · · · | pk ⇒ ek , e0 is called the
selector, and e1 . . . ek are called the branches. The patterns in case expressions
may not be nested. No variables may appear more than once within a pattern.
We assume that the patterns in a case expression are non-overlapping and ex-
haustive.

We use the notation [e′1/e1, . . . , e
′
n/en] to denote a replacement, which rep-

resents the simultaneous replacement of the expressions e1, . . . , en by the cor-
responding expressions e′1, . . . , e

′
n, respectively. We say that a replacement is a

substitution if all of the expressions e1, . . . , en are variables and define a predicate
is-sub to determine whether a given replacement is a substitution. We say that
an expression e is an instance of another expression e′ iff there is a substitution
θ s.t. e ≡ e′ θ.
Example 1. An example program for reversing the list xs is shown in Fig. 2.

nrev xs
where
nrev = λxs.case xs of

[] ⇒ []
| x ′ : xs ′ ⇒ app (nrev xs ′) [x ′]

app = λxs.λys.case xs of
[] ⇒ ys
| x ′ : xs ′ ⇒ x ′ : (app xs ′ ys)

Fig. 2. Example Program for List Reversal

3 Positive Supercompilation

In this section, we define the positive supercompilation algorithm; this is largely
based on the definition given in [4], but has been adapted to define positive
supercompilation within a similar framework to distillation. Within our for-
mulation, positive supercompilation consists of three phases; driving (denoted
by DS), process graph construction (denoted by GS) and folding (denoted by
FS). The positive supercompilation S of an expression e is therefore defined as:
S[[e]] = FS [[GS [[DS [[e]]]]]]
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3.1 Driving

At the heart of the positive supercompilation algorithm are a number of driving
rules which reduce a term (possibly containing free variables) using normal-order
reduction to produce a process tree. We define the rules for driving by identifying
the next reducible expression (redex) within some context. An expression which
cannot be broken down into a redex and a context is called an observable. These
are defined as follows.

Definition 1 (Redexes, Contexts and Observables). Redexes, contexts
and observables are defined as shown in Fig. 3, where red ranges over redexes,
con ranges over contexts and obs ranges over observables (the expression con〈e〉
denotes the result of replacing the ‘hole’ 〈〉 in con by e).

red ::= f
| (λv .e0 ) e1
| case (v e1. . . en) of p1 ⇒ e ′

1 | · · · | pk ⇒ e ′
k

| case (c e1. . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k

con ::= 〈〉
| con e
| case con of p1 ⇒ e1 | · · · | pk ⇒ ek

obs ::= v e1 . . . en
| c e1 . . . en
| λv .e

Fig. 3. Syntax of Redexes, Contexts and Observables

Lemma 1 (Unique Decomposition Property). For every expression e, ei-
ther e is an observable or there is a unique context con and redex e′ s.t. e =
con〈e′〉. 2

Definition 2 (Process Trees). A process tree is a directed tree where each
node is labelled with an expression, and all edges leaving a node are ordered.
One node is chosen as the root, which is labelled with the original expression
to be transformed. We use the notation e → t1, . . . , tn to represent the tree
with root labelled e and n children which are the subtrees t1, . . . , tn respectively.
Within a process tree t, for any node α, t(α) denotes the label of α, anc(t, α)
denotes the set of ancestors of α in t, t{α := t′} denotes the tree obtained by
replacing the subtree with root α in t by the tree t′ and root(t) denotes the label
at the root of t.

Definition 3 (Driving). The core set of transformation rules for positive su-
percompilation are the driving rules shown in Fig. 4, which define the map DS
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from expressions to process trees. The rules simply perform normal order reduc-
tion, with information propagation within case expressions giving the assumed
outcome of the test. Note that the driving rules are mutually exclusive and
exhaustive by the unique decomposition property.

DS [[v e1 . . . en ]] = v e1 . . . en → DS [[e1 ]], . . . ,DS [[en ]]
DS [[c e1 . . . en ]] = c e1 . . . en → DS [[e1 ]], . . . ,DS [[en ]]
DS [[λv .e]] = λv .e → DS [[e]]
DS [[con〈f 〉]] = con〈f 〉→ DS [[con〈unfold f 〉]]
DS [[con〈(λv .e0 ) e1 〉]] = con〈(λv .e0 ) e1 〉→ DS [[con〈e0 [e1/v ]〉]]
DS [[con〈case (v e1 . . . en) of p1 ⇒ e ′

1 | · · · | pk ⇒ e ′
k 〉]]

= con〈case (v e1 . . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k 〉 →
DS [[v e1 . . . en ]],DS [[e ′

1 [p1/v e1 . . . en ]]], . . .,DS [[e ′
k [pk/v e1 . . . en ]]]

DS [[con〈case (c e1 . . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k 〉]]
= con〈case (c e1 . . . en) of p1 ⇒ e ′

1 | · · · | pk ⇒ e ′
k 〉 →

DS [[con〈ei [e1/v1 , . . . , en/vn ]〉]]
where pi = c v1 . . . vn

Fig. 4. Driving Rules

As process trees are potentially infinite data structures, they should be lazily
evaluated.

Example 2. A portion of the process tree generated from the list reversal pro-
gram in Fig. 2 is shown in Fig. 5.

3.2 Generalization

In positive supercompilation, generalization is performed when an expression is
encountered which is an embedding of a previously encountered expression. The
form of embedding which we use to inform this process is known as homeomor-
phic embedding. The homeomorphic embedding relation was derived from results
by Higman [7] and Kruskal [8] and was defined within term rewriting systems [9]
for detecting the possible divergence of the term rewriting process. Variants of
this relation have been used to ensure termination within positive supercompi-
lation [10], partial evaluation [11] and partial deduction [12,13]. It can be shown
that the homeomorphic embedding relation .e is a well-quasi-order, which is
defined as follows.

Definition 4 (Well-Quasi Order). A well-quasi order on a set S is a reflexive,
transitive relation ≤S such that for any infinite sequence s1, s2, . . . of elements
from S there are numbers i, j with i < j and si ≤S sj .
This ensures that in any infinite sequence of expressions e0, e1, . . . there defi-
nitely exists some i < j where ei .e ej , so an embedding must eventually be
encountered and transformation will not continue indefinitely.
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nrev xs

case xs of . . .

xs []

xs = []

app (nrev xs′) [x′]

xs = x′ : xs′

† case (nrev xs′) of . . .

case (case xs′ of . . .) of . . .

xs′ [x′]

xs′ = []

case (app (nrev xs′′) [x′′]) of . . .

xs′ = x′′ : xs′′

case (case (nrev xs′′) of . . .) of . . .

case (case (case xs′′ of . . .) of . . .) of . . .

xs′′ [x′′, x′]

xs′′ = []

case (case (app (nrev xs′′′) [x′′′]) of . . .) of . . .

xs′′ = x′′′ : xs′′′

Fig. 5. Portion of Process Tree Resulting From Driving nrev xs

Definition 5 (Homeomorphic Embedding of Expressions). To define the
homeomorphic embedding relation on expressions .e, we firstly define a relation
Ee which requires that all of the free variables within the two expressions match
up as follows:

e1 Ce e2
e1 Ee e2

e1 ./e e2
e1 Ee e2

e Ee (e′[v/v′])

λv.e ./e λv
′.e′

∃i ∈ {1 . . . n}.e Ee ei
e Ce φ(e1, . . . , en)

∀i ∈ {1 . . . n}.ei Ee e′i
φ(e1, . . . , en) ./e φ(e′1, . . . , e

′
n)



A Graph-Based Definition of Distillation 53

e0 Ee e′0 ∀i ∈ {1 . . . n}.∃θi.pi ≡ (p′i θi) ∧ ei Ee (e′i θi)

(case e0 of p1 : e1| . . . |pn : en) ./e (case e′0 of p′1 : e′1| . . . |p′n : e′n)

An expression is embedded within another by this relation if either diving (de-
noted by Ce) or coupling (denoted by ./e) can be performed. Diving occurs
when an expression is embedded in a sub-expression of another expression, and
coupling occurs when two expressions have the same top-level functor and all
the corresponding sub-expressions of the two expressions are embedded. This
embedding relation is extended slightly to be able to handle constructs such
as λ-abstractions and case expressions which may contain bound variables. In
these instances, the bound variables within the two expressions must also match
up. The homeomorphic embedding relation .e can now be defined as follows:

e1 .e e2 iff ∃θ.is-sub(θ) ∧ e1 θ ./e e2
Thus, within this relation, the two expressions must be coupled, but there is
no longer a requirement that all of the free variables within the two expressions
match up.

Definition 6 (Generalization of Expressions). The generalization of two
expressions e and e′ (denoted by e ue e′) is a triple (eg, θ, θ

′) where θ and θ′ are
substitutions such that egθ ≡ e and egθ

′ ≡ e′, as defined in term algebra [9]1.
This generalization is defined as follows:

e ue e′ =





(φ(eg1, . . . , e
g
n),

⋃n
i=1 θi,

⋃n
i=1 θ

′
i), if e .e e′

where e = φ(e1, . . . , en)
e′ = φ(e′1, . . . , e

′
n)

(egi , θi, θ
′
i) = ei ue e′i

(v, [e/v], [e′/v]), otherwise

Within these rules, if both expressions have the same functor at the outermost
level, this is made the outermost functor of the resulting generalized expression,
and the corresponding sub-expressions within the functor applications are then
generalized. Otherwise, both expressions are replaced by the same variable. The
rewrite rule (e, θ[e′/v1, e′/v2], θ′[e′′/v1, e′′/v2]) ⇒ (e[v2/v1], θ[e′/v2], θ[e′′/v2]) is
exhaustively applied to the triple resulting from generalization to minimize the
substitutions by identifying common substitutions which were previously given
different names.

To represent the result of generalization, we introduce a let construct of the
form let v1 = e1 , . . . , vn = en in e0 into our language. This represents the
permanent extraction of the expressions e1, . . . , en, which will be transformed
separately. The driving rule for this new construct is as follows:

DS [[con〈let v1 = e1 , . . . , vn = en in e0 〉]] =
con〈let v1 = e1 , . . . , vn = en in e0 〉→ DS [[e1 ]], . . . ,DS [[en ]],DS [[con〈e0 〉]]

1 Note that, in a higher-order setting, this is no longer a most specific generaliza-
tion, as the most specific generalization of the terms f (g x) and f (h x) would be
(f (v x), [g/v], [h/v]), whereas f (g x) ue f (h x) = (f v, [(g x)/v], [(h x)/v]).
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We now define an abstract operation on expressions which extracts the sub-terms
resulting from generalization using let expressions.

Definition 7 (Abstract Operation).

abstracte(e, e
′) = let v1 = e1, . . . , vn = en in eg

where e ue e′ = (eg, [e1/v1, . . . , en/vn], θ)

3.3 Process Graph Construction

In our formulation of positive supercompilation, the potentially infinite process
tree produced by driving is converted into a finite process graph.

Definition 8 (Process Graph). A process graph is a process tree which may

in addition contain replacement nodes. A replacement node has the form e
θ99K α

where α is an ancestor node in the tree and θ is a replacement s.t. t(α) θ ≡ e.

Definition 9 (Process Graph Substitution). Substitution in a process graph
is performed by applying the substitution pointwise to all the node labels within
it as follows.

(e → t1 , . . . , tn) θ = e θ → t1 θ, . . . , tn θ

Definition 10 (Process Graph Equivalence). Two process graphs are equiv-
alent if the following relation is satisfied.

con〈e〉→ t1, . . . , tn ≡ con ′〈e ′〉→ t′1, . . . , t
′
n, iff e .e e′ ∧ ∀i ∈ {1 . . . n}.ti ≡ t′i

e
θ99K t ≡ e ′

θ′99K t ′, iff t ≡ t′

Within this relation, there is therefore a requirement that the redexes within
corresponding nodes are coupled.

Definition 11 (Process Graph Construction in Positive Supercompi-
lation). The rules for the construction of a process graph from a process tree
in positive supercompilation t are as follows.

GS [[β = con〈f 〉→ t ′]] =

{
con〈f 〉

[e′i/ei]99K α, if ∃α ∈ anc(t, β).t(α) .e t(β)
con〈f 〉→ GS [[t ′]], otherwise

where
t(α) ue t(β) = (eg, [ei/vi], [e

′
i/vi])

GS [[e → t1 , . . . , tn ]] = e → GS [[t1 ]], . . . ,GS [[tn ]]

A process graph is considered to be folded when all of the replacements within
it are substitutions. This folding is performed as follows.

Definition 12 (Folding in Positive Supercompilation). The rules for fold-
ing a process graph t using positive supercompilation are as follows.



A Graph-Based Definition of Distillation 55

FS [[e
θ99K α]] =

{
e

θ99K α, if is-sub(θ)
t{α := S[[abstracte(t(α), e)]]}, otherwise

FS [[e → t1 , . . . , tn ]] = e → FS [[t1 ]], . . . ,FS [[tn ]]

Example 3. The process graph constructed from the process tree in Fig. 5 is
shown in Fig. 6 where the replacement θ is equal to [app (nrev xs′′) [x′′]/nrev xs′].

nrev xs

case xs of . . .

xs []

xs = []

app (nrev xs′) [x′]

xs = x′ : xs′

case (nrev xs′) of . . .

case (case xs′ of . . .) of . . .

xs′ [x′]

xs′ = []

case (app (nrev xs′′) [x′′]) of . . .

xs′ = x′′ : xs′′

θ

Fig. 6. Process Graph Constructed for nrev xs

The folded process graph constructed from the process graph in Fig. 6 is shown
in Fig. 7.

4 Distillation

In this section, we define the distillation algorithm within a similar framework
to that used to define positive supercompilation in the previous section. Distilla-
tion consists of two phases; driving (the same as for positive supercompilation)
and folding (denoted by FD). The distillation D of an expression e is therefore
defined as: D[[e]] = FD[[DS [[e]]]]. Folding in distillation is performed with respect
to process graphs. We therefore define what it means for one process graph to
be an instance or a homeomorphic embedding of another.
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nrev xs

case xs of . . .

xs []

xs = []

app (nrev xs′) [x′]

xs = x′ : xs′

let vs = nrev xs′ in case vs of . . .

nrev xs′ case vs of . . .

vs [x′]

vs = []

v′ : (app vs′ [x′])

vs = v′ : vs′

v′ app vs′ [x′]

case vs′ of . . .

vs′ [x′]

vs′ = []

v′′ : (app vs′′ [x′])

vs′ = v′′ : vs′′

v′′ app vs′′ [x′]

[vs′′/vs′]

[xs′/xs]

Fig. 7. Folded Process Graph for nrev xs

Definition 13 (Process Graph Instance). A process graph t′ is an instance
of another process graph t (denoted by t lθ t′) iff there is a substitution θ s.t.
t ≡ t′ θ.

Definition 14 (Homeomorphic Embedding of Process Graphs). To de-
fine the homeomorphic embedding relation on process graphs .t, we firstly define
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a relation Et which requires that all the free variables in the two process graphs
match up as follows:

t1 Ct t2
t1 Et t2

t1 ./t t2
t1 Et t2

t Et (t′[v/v′])

λv.e→ t ./t λv
′.e′ → t′

e ./e e
′ ∀i ∈ {1 . . . n}.ti Et t′i

con〈e〉→ t1 , . . . , tn ./t con
′〈e ′〉→ t ′1 , . . . , t

′
n

∃i ∈ {1 . . . n}.t Et ti
t Ct e→ t1, . . . , tn

t ./t t
′

e
θ99K t ./t e ′

θ′99K t ′

t0 Et t′0 ∀i ∈ {1...n}.∃θi.pi ≡ (p′i θi) ∧ ti Et (t′i θi)

(case e0 of p1 : e1|...|pn : en)→ t0, ..., tn ./t (case e′0 of p′1 : e′1|...|p′n : e′n)→ t′0, ..., t
′
n

A tree is embedded within another by this relation if either diving (denoted by
Ct) or coupling (denoted by ./t) can be performed. Diving occurs when a tree is
embedded in a sub-tree of another tree, and coupling occurs when the redexes of
the root expressions of two trees are coupled. As for the corresponding embedding
relation on expressions, this embedding relation is extended slightly to be able
to handle constructs such as λ-abstractions and case expressions which may
contain bound variables. In these instances, the bound variables within the two
process graphs must also match up. The homeomorphic embedding relation on
process graphs .t can now be defined as follows:

t1 .t t2 iff ∃θ.is-sub(θ) ∧ t1 θ ./t t2

Within this relation, there is no longer a requirement that all of the free variables
within the two process graphs match up.

4.1 Generalization

Generalization is performed on two process trees if their corresponding process
graphs are homeomorphically embedded as follows.

Definition 15 (Generalization of Process Trees). Generalization is per-
formed on process trees using the ut operator which is defined as follows:

t ut t′ =





(e → tg1 , . . . , t
g
n ,

⋃n
i=1 θi,

⋃n
i=1 θ

′
i), if t .t t′

where t = e → t1 , . . . , tn
t′ = e ′ → t ′1 , . . . , t

′
n

(tgi , θi, θ
′
i) = ti ut t′i

(DS [[eg]], θ, θ′), otherwise
where (eg, θ, θ′) = root(t) ue root(t ′)
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Within these rules, if two trees are coupled then their corresponding sub-trees
are generalized. Otherwise, the expressions in the corresponding root nodes
are generalized. As the process trees being generalized are potentially infinite,
this generalization should also be performed lazily. As is done for the gener-
alization of expressions, the rewrite rule (e, θ[e′/v1, e′/v2], θ′[e′′/v1, e′′/v2]) ⇒
(e[v2/v1], θ[e′/v2], θ[e′′/v2]) is also exhaustively applied to the triple resulting
from generalization to minimize the substitutions by identifying common sub-
stitutions which were previously given different names. Note that the use of
this rewrite rule is essential for the correctness of the distillation algorithm. We
now define an abstract operation on process trees which extracts the sub-terms
resulting from generalization using let expressions.

Definition 16 (Abstract Operation on Process Trees).

abstractt(t, t
′) = (let v1 = e1, . . . , vn = en in root(t))→DS [[e1]], ...,DS [[en]], tg

where t ut t′ = (tg, [e1/v1, . . . , en/vn], θ)

4.2 Folding

In distillation, process graphs are used to determine when to perform folding
and generalization. These process graphs are constructed slightly differently than
those in positive supercompilation, with replacement nodes being added when
an expression is encountered which is an embedding (rather than a coupling) of
an ancestor expression. To facilitate this, a new relation .′

e is defined as follows:

e1 .′
e e2 iff ∃θ.is-sub(θ) ∧ e1 θ Ee e2

Definition 17 (Process Graph Construction in Distillation). The rules
for the construction of a process graph from a process tree in distillation t are
as follows.

GD[[β = con〈f 〉→ t ′]] =

{
con〈f 〉

[e′i/ei]99K α, if ∃α ∈ anc(t, β).t(α) .′
e t(β)

con〈f 〉→ GD[[t ′]], otherwise
where
t(α) ue t(β) = (eg, [ei/vi], [e

′
i/vi])

GD[[e → t1 , . . . , tn ]] = e → GD[[t1 ]], . . . ,GD[[tn ]]

Definition 18 (Folding in Distillation). The rules for folding a process tree
t using distillation are as follows.

FD[[β = con〈f 〉→ t ′]] =





con〈f 〉 θ99K α, if ∃α ∈ anc(t, β).GD[[α]] lθ GD[[β]]
t{α := FD[[abstractt(α, β)]]},

if ∃α ∈ anc(t, β).GD[[α]] .t GD[[β]]
con〈f 〉→ FD[[t ′]], otherwise

FD[[e → t1 , . . . , tn ]] = e → FD[[t1 ]], . . . ,FD[[tn ]]

Example 4. The process graph constructed from the root node of the process tree
in Fig. 5 is shown in Fig. 8, where the replacement θ is [app (nrev xs′) [x′]/nrev xs].
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nrev xs

case xs of . . .

xs []

xs = []

app (nrev xs′) [x′]

xs = x′ : xs′

θ

Fig. 8. Process Graph

Similarly, the process graph constructed from the node labelled † in the pro-
cess tree in Fig. 5 is shown in Fig. 9, where the replacement θ′ is equal to
[app (nrev xs′′) [x′′]/nrev xs′].

case (nrev xs′) of . . .

case (case xs′ of . . .) of . . .

xs′ [x′]

xs′ = []

case (app (nrev xs′′) [x′′]) of . . .

xs′ = x′′ : xs′′

θ′

Fig. 9. Process Graph

The process graph in Fig. 8 is embedded in the process graph in Fig. 9, so the
corresponding process trees are generalized to produce the process tree shown in
Fig. 10. The process graph constructed for the node labelled † is now an instance
of the process graph constructed for the root node of this process tree, so folding
is performed to produce the folded process graph shown in Fig. 11

5 Program Residualization

A residual program can be constructed from a folded process graph using the
rules C as shown in Fig. 12.

Example 5. The program constructed from the folded process graph resulting
from the positive supercompilation of nrev xs shown in Fig. 7 is as shown in
Fig. 13. The program constructed from the folded process graph resulting from
the distillation of nrev xs shown in Fig. 11 is as shown in Fig. 14. We can see
that the distilled program is a super-linear improvement over the original, while
the supercompiled program has produced no improvement.
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let vs = [] in nrev xs

[] nrev xs

case xs of . . .

xs vs

xs = []

app (nrev xs′) [x′]

xs = x′ : xs′

case (nrev xs′) of . . .

case (case xs′ of . . .) of . . .

xs′ x′ : vs

xs′ = []

case (app (nrev xs′′) [x′′]) of . . .

xs′ = x′′ : xs′′

case (case (nrev xs′′) of . . .) of . . .

case (case (case xs′′ of . . .) of . . .) of . . .

xs′′ x′′ : x′ : vs

xs′′ = []

case (case (app (nrev xs′′′) [x′′′]) of . . .) of . . .

xs′′ = x′′′ : xs′′′

Fig. 10. Result of Generalizing nrev xs

6 Conclusion

We have presented a graph-based definition of the distillation transformation
algorithm for higher-order functional languages. The definition is made within
a similar framework to the positive supercompilation transformation algorithm,
thus allowing for a more detailed comparison of the two algorithms. We have
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let vs = [] in nrev xs

[] nrev xs

case xs of . . .

xs vs

xs = []

app (nrev xs′) [x′]

[x′ : vs/vs]

Fig. 11. Result of Folding nrev xs

C[[(v e1 . . . en)→ t1 , . . . , tn ]] φ = v (C[[t1 ]] φ) . . . (C[[tn ]] φ)
C[[(c e1 . . . en)→ t1 , . . . , tn ]] φ = c (C[[t1 ]] φ) . . . (C[[tn ]] φ)
C[[(λv .e)→ t ]] φ = λv .(C[[t ]] φ)
C[[(con〈f 〉)→ t ]] φ = f ′ v1. . . vn

where
f ′ = λv1 . . . vn.C[[t]] (φ ∪ {f ′ v1 . . . vn = con〈f 〉→ t})
{v1 . . . vn} = fv(t)

C[[(con〈f 〉) θ99K t ]] φ = (f v1 . . . vn) θ
where
(f ′ v1 . . . vn = t) ∈ φ

C[[(con〈case (v e1 . . . en) of p1 ⇒ e1 | · · · | pn ⇒ en〉)→ t0 , . . . , tn ]] φ
= case (C[[t0 ]] φ) of p1 ⇒ C[[t1 ]] φ | · · · | pn ⇒ C[[tn ]] φ

C[[let v1 = t1 , . . . , vn = tn in t ]] φ
= (C[[t ]] φ)[(C[[t1 ]] φ)/v1 , . . . , (C[[tn ]] φ)/vn ]

Fig. 12. Rules For Constructing Residual Programs

found that the main distinguishing characteristic between the two algorithms
is that in positive supercompilation, generalization and folding are performed
with respect to expressions, while in distillation they are performed with respect
to graphs. We have also found that while only linear improvements in perfor-
mance are possible using positive supercompilation, super-linear improvements
are possible using distillation. This is because computationally expensive terms
can only be extracted from within loops when generalizing graphs rather than
expressions. Of course, this extra power comes at a price. As generalization and
folding are now performed on graphs rather than flat terms, there may be an
exponential increase in the number of steps required to perform these operations
in the worst case.

There are a number of possible directions for further work. It has already
been shown how distillation can be used to verify safety properties of programs
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f xs
where
f = λxs.case xs of

[] ⇒ []
| x ′ : xs ′ ⇒ case (f xs ′) of

[] ⇒ [x ′]
| x ′′ : xs ′′ ⇒ x′′ : (f ′ xs ′′ x ′)

f ′ = λxs.λy .case xs of
[] ⇒ [y ]
| x ′ : xs ′ ⇒ x ′ : (f ′ xs ′ y)

Fig. 13. Result of Applying Positive Supercompilation to nrev xs

f xs []
where
f = λxs.λvs.case xs of

[] ⇒ vs
| x ′ : xs ′ ⇒ f xs ′ (x ′ : vs)

Fig. 14. Result of Applying Distilling to nrev xs

[14]; work is now in progress by the second author to show how it can also be
used to verify liveness properties. Work is also in progress in incorporating the
distillation algorithm into the Haskell programming language, so this will allow
a more detailed evaluation of the utility of the distillation algorithm to be made.
Distillation is being added to the York Haskell Compiler [15] in a manner similar
to the addition of positive supercompilation to the same compiler in Supero [16].
Further work is also required in proving the termination and correctness of the
distillation algorithm. Finally, it has been found that the output produced by
the distillation algorithm is in a form which is very amenable to automatic paral-
lelization. Work is also in progress to incorporate this automatic parallelization
into the York Haskell Compiler.
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Strengthening Supercompilation For
Call-By-Value Languages

Peter A. Jonsson and Johan Nordlander
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Abstract. A termination preserving supercompiler for a call-by-value
language sometimes fails to remove intermediate structures that a super-
compiler for a call-by-name language would remove. This discrepancy in
power stems from the fact that many function bodies are either non-linear
in use of an important variable or often start with a pattern match on
their first argument and are therefore not strict in all their arguments. As
a consequence, intermediate structures are left in the output program,
making it slower. We present a revised supercompilation algorithm for
a call-by-value language that propagates let-bindings into case-branches
and uses termination analysis to remove dead code. This allows the algo-
rithm to remove all intermediate structures for common examples where
previous algorithms for call-by-value languages had to leave the interme-
diate structures in place.

1 Introduction

Intermediate lists in functional programs allows the programmer to write clear
and concise programs, but carry a run time cost since list cells need to be both
allocated and garbage collected. Much research has been conducted on automatic
program transformations that remove these intermediate structures, both for
lazy and strict languages [1,2,3,4].

A common pattern that appears both in input programs and during su-
percompilation is a let-expression where the body is a case-expression: letx =
e in case e′ of {pi → ei}. A supercompiler for a strict language is only allowed to
substitute e for x if we know that x is strict in the case-expression, and for prag-
matic and proof technical reasons x must also be linear in the case-expression.
As expected, it is quite easy to define functions that do not fulfill both of these
requirements, or functions that are complex enough to fool the analyses used by
the supercompiler. A standard example of such a function is zip.

If the supercompiler instead propagates let-expressions into the branches of
case-expressions it simplifies the job for the analyses since they no longer need to
account for different behaviours in different branches. Not only does this mod-
ification increase the precision of the analyses, but it also allows our improved
supercompiler to remove more constructions that cause memory allocations. The
propagation of let-expressions is orthogonal to the amount of information prop-
agated, so it works for both positive [2] and perfect supercompilation [5]. We
illustrate the increased strength through the following example:
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zip (map f1 xs) (map f2 ys)

Its generalization to tree-like structures is also of interest:

zipT (mapT f3 t1) (mapT f4 t2)

These examples allow us to position supercompilation for a strict language
relative to other well-known program transformations that perform program
specialization and remove intermediate structures:

Shortcut deforestation [6] removes one of the intermediate lists in the first
example, but does not remove arbitrary algebraic data types.

Stream fusion [7] removes both the intermediate lists in the first example, but
does not remove arbitrary algebraic data types without manual extensions.

Positive supercompilation [2] for a strict language removes the first inter-
mediate structure in both examples, and for a lazy language it removes both
lists and both trees.

This paper presents one more step towards allowing the programmer to write
clear and concise code in strict languages while getting good performance. The
contributions of our work are:

– We provide a stronger algorithm for positive supercompilation in a strict
and pure functional language (Section 4).

– We extend the supercompiler with a termination test that enables some un-
used let-bindings to be removed even though they are not fully evaluated.
This feature is particularly beneficial in conjunction with the first contri-
bution, since pushing bindings into case branches tend to result in many
seemingly redundant let-expressions (Section 5).

– We prove the soundness of the algorithm in Section 6.

We start out with a step by step example where our improved supercom-
piler removes both intermediate lists for zip in Section 2 to give the reader an
intuitive feel for how the algorithm behaves. Our language of study is defined in
Section 3 followed by the technical contributions. We end with a discussion of
the performance of the algorithm in Section 7.

2 Examples

This section gives a walk-through of the transformation of zip for readers who are
already familiar with positive supercompilation for call-by-value [4]. For readers
who are not at all familiar with these techniques there are more examples of
step by step transformations in the work of Wadler [1] and Sørensen, Glück and
Jones [2].

Our first example is transformation of the standard function zip, which takes
two lists as parameters: zip (map f xs ′) (map g ys ′). The standard definitions of
map and zip are:
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map =λf xs. case xs of
[] → ys
(x : xs) → f x : map f xs

zip =λxs ys. case xs of
[] → []
(x ′ : xs ′) → case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

We start our transformation by allocating a new fresh function name (h0) to this
expression, inlining the body of zip, substituting map f xs ′ into the body of zip,
and putting map g ys ′ into a let-expression to preserve termination properties of
the program:

let ys = map g ys ′

in case map f xs ′ of
[] → []
(x ′ : xs ′) → case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

The key difference between this algorithm and our previous work is that it trans-
forms the case expression without touching the let-expression. After inlining the
body of map in the head of the case-expression and substituting the arguments
into the body the result becomes:

let ys = map g ys ′

in case ( case xs ′ of
[] → []
(z : zs) → f z : map f zs) of

[] → []
(x ′ : xs ′) → case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

Notice how the let-expression is still untouched by the transformation – this is
essential for the power of the transformation. We duplicate the let-expression
and the outer case in each of the inner case’s branches, using the expression in
the branches as the head of the outer case-expression:
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case xs ′ of
[] → let ys = map g ys ′

in case [] of
[] → []
(x ′ : xs ′) → case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

(z : zs) → let ys = map g ys ′

in case f z : map f zs of of
[] → []
(x ′ : xs ′) → case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

The case-expression in the first branch of the outermost case reduces to the
empty list, but the let-expression must remain or we might introduce accidental
termination in the program. The second branch is more interesting: we have
a known constructor in the head of the case-expression so we can perform the
reduction:

case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → let ys = map g ys ′

in let x ′ = f z , xs ′ = map f zs
in case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

The first branch can either be left as is, or one can transform the let-expression
to get a new function that is isomorphic to map and a call to it. This is an
orthogonal problem to removing multiple intermediate structures however, and
we will not treat it further in this example. In Section 5 we show how to au-
tomatically remove superfluous let-expressions such as this through termination
analysis. The reduction of the case-expression in the second branch reveals that
the second branch is strict in ys, so ys will be evaluated, and the termination be-
havior will be the same even after performing the substitution. After performing
the substitution we have:

case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → let x ′ = f z , xs ′ = map f zs

in case map g ys ′ of
[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

We repeat inlining the body of map in the head of the inner case-expression and
substituting the arguments into the body which gives:
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case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → let x ′ = f z , xs ′ = map f zs

in case ( case ys ′ of
[] → []
(z ′ : zs ′) → g z ′ : map g zs ′) of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

Once again we move the let-expression and the middle case into the branches of
the innermost case:

case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → case ys ′ of

[] → let x ′ = f z , xs ′ = map f zs
in case [] of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

(z ′ : zs ′) → let x ′ = f z , xs ′ = map f zs
in case g z ′ : map g zs ′ of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

The first branch reduces to the empty list but we have to preserve the let-
expression for termination purposes. Transforming the first branch is not going
to reveal anything interesting, so we leave that branch as is, but of course the
algorithm transforms that branch as well. The second branch is more interesting
since it has a known constructor in the head of a case-expression, so we perform
the reduction:

case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → case ys ′ of

[] → let x ′ = f z , xs ′ = map f zs in []
(z ′ : zs ′) → let x ′ = f z , xs ′ = map f zs

in (x ′, g z ′) : zip xs ′ (map g zs ′)

After the reduction it is clear that both x’ and xs’ are really strict, so it is safe
to substitute them:

case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → case ys ′ of

[] → let x ′ = f z , xs ′ = map f zs in []
(z ′ : zs ′) → (f z , g z ′) : zip (map f zs) (map g zs ′)

We notice a familiar expression in zip (map f zs) (map g zs ′), which is a renaming
of what we started with, and fold here. This gives a new function h0 and a call
to that function as a final result:
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letrec h0 = λ f xs ′ g ys ′.
case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → case ys ′ of

[] → let x ′ = f z , xs ′ = map f zs in []
(z ′ : zs ′) → (f z , g z ′) : h0 f zs g zs ′

in h0 f xs ′ g ys ′

The new function h0 does not pass any intermediate lists for the common
case when both xs and ys are non-empty. If one of them is empty, it is necessary
to run map on the remaining part of the other list.

In the introduction we claimed that we can fuse both intermediate lists and
both intermediate trees when zipping a list or a tree. The second example requires
some new definitions of map and zip over a simple tree datatype:

data Tree a = Node (Tree a) a (Tree a) | Empty

mapT = λf xs. case xs of
Empty → Empty
Node l a r → Node (mapT f l) (f a) (mapT f r)

zipT = λxs ys.
case xs of

Empty → Empty
Node l a r →

case ys of
Empty → Empty
Node l ′ a ′ r ′ → Node (zipT l l ′) (a, a ′) (zipT r r ′)

We transform the expression zipT (mapT f xs) (mapT g ys), which applies f
to the first tree, g to the second tree and create a final tree whose nodes consists of
pairs of the data from the two intermediate trees. We start our transformation by
allocating a new fresh function name (h1) and repeat many of the transformation
steps that we just saw for the list case. The end result is:

letrec h1 = λ f xs g ys.
case xs of
Empty → let ys ′ = mapT g ys in Empty
Node l a r →

case ys of
Empty → let l1 = mapT f l , a1 = f a

r1 = mapT f r in Empty
Node l ′ a ′ r ′ → Node (h1 f l g l ′) (f a, g a ′) (h1 f r g r ′)

in h1 f xs g ys

The same result as in the list case: the new function h1 does not pass any
intermediate trees for the common case: when both xs and ys are non-empty. If
one of them is empty, it is necessary to run mapT on the remaining part of the
other tree. This example also highlights the need to discard unused let-bindings.
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The third example of how the new algorithm improves the strength of su-
percompilation for call-by-value languages is non-linear occurrences of variables,
such as in

let x = e in fst (x , x )

Our previous algorithm would separately transform e and fst (x, x) which
would result in let x = e ′ in x , where it is obvious that x is linear. Our improved
algorithm instead inlines fst without touching e:

let x = e in case (x , x ) of { (x , y) → x }

The algorithm continues to transform the case-expression giving a let-expression
that is linear in x: let x = e in x . This expression can be transformed to e and
the supercompiler can continue to transform e, having eliminated the entire let-
expression in the initial program.

3 Language

Our language of study is a strict, higher-order, functional language with let-
bindings and case-expressions. Its syntax for expressions and values is shown in
Figure 1.

Expressions

e, f ::= x | g | k e | f e | λx.e | case e of {ki xi → ei} | letx = e in f
| letrec g = v in e

Values

v ::= λx.e | k v

Fig. 1. The language

Let X be an enumerable set of variables ranged over by x and K a set of
constructor symbols ranged over by k. Let g range over an enumerable set of
defined names and let G be a given set of recursive definitions of the form (g, v).

We abbreviate a list of expressions e1 . . . en as e, and a list of variables
x1 . . . xn as x. We denote the set of ordered free variables of an expression e
by fv(e), and the function names by fn(e).

A program is an expression with no free variables and all function names
defined in G. The intended operational semantics is given in Figure 2, where
[e/x]e′ is the capture-free substitution of expressions e for variables x in e′.

A reduction context E is a term containing a single hole [ ], which indicates
the next expression to be reduced. The expression E〈e〉 is the term obtained by
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Reduction contexts

E ::= [ ] | E e | (λx.e) E | k E | case E of {pi → ei} | letx = E in e

Evaluation relation

E〈g〉 7→ E〈v〉 (Global)
if (g, v) ∈ G

E〈(λx.e) v〉 7→ E〈[v/x]e〉 (App)
E〈letx = v in e〉 7→ E〈[v/x]e〉 (Let)
E〈letrec g = v in f〉 7→ E〈[letrec g = v in v/g]f〉 (Letrec)
E〈case kj v of {ki xi → ei}〉 7→ E〈[v/xj ]ej〉 (KCase)

Fig. 2. Reduction semantics

replacing the hole in E with e. E denotes a list of terms with just a single hole,
evaluated from left to right.

If a free variable appears no more than once in a term, that term is said to
be linear with respect to that variable. Like Wadler [1], we extend the definition
slightly for linear case expressions: no variable may appear in both the scrutinee
and a branch, although a variable may appear in more than one branch.

4 Positive Supercompilation

This section presents an algorithm for positive supercompilation for a higher-
order call-by-value language, which removes more intermediate structures than
previous work [4].

Our supercompiler is defined as a set of rewrite rules that pattern-match
on expressions. This algorithm is called the driving algorithm, and is defined
in Figure 3. Three additional parameters appear as subscripts to the rewrite
rules: a memoization list ρ, a driving context R, and an ordered set B of expres-
sions bound to variables (x1 = e1, x2 = e2, . . .). We use the short-hand notation
let B in e for let x1 = e1 in let x2 = e2 in .. in e. The memoization list holds in-
formation about expressions already traversed and is explained more in detail in
Section 4.1. An important detail is that our driving algorithm immediately per-
forms the program extraction instead of producing a process tree. The driving
context R is an evaluation context for a call-by-name language:

R ::=[ ] | R e | caseR of {pi → ei}

An expression e is strict with regards to a variable x if it eventually evalu-
ates x; in other words, if e 7→ . . . 7→ E〈x〉. Such information is not decidable in
general, although call-by-value semantics allows for reasonably tight approxima-
tions. One such approximation is given in Figure 4, where the strict variables
of an expression e are defined as all free variables of e except those that only
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DJxK[],B,G,ρ = letDJBK[],∅,G,ρ inx (R1)
DJgKR,B,G,ρ = Dapp(g)R,B,G,ρ (R2)
DJk eK[],B,G,ρ = letDJBK[],∅,G,ρ in kDJeK[],∅,G,ρ (R3)
DJx eKR,B,G,ρ = letDJBK[],∅,G,ρ inR〈xDJeK[],∅,G,ρ〉 (R4)
DJλx.eK[],B,G,ρ = (λx.DJeK[],B,G,ρ) (R5)
DJ(λx.f) eKR,B,G,ρ = DJletx = e in fKR,B,G,ρ (R6)
DJe e′KR,B,G,ρ = DJeKR〈[] e′〉,B,G,ρ (R7)
DJletx = v in fKR,B,G,ρ = DJletB inR〈[v/x]f〉K[],∅,G,ρ (R8)
DJletx = y in fKR,B,G,ρ = DJletB inR〈[y/x]f〉K[],∅,G,ρ (R9)
DJletx = e in fKR,B,G,ρ = DJletB inR〈[e/x]f〉K[],∅,G,ρ, if x ∈ strict(f) (R10)

and x ∈ linear(f)
DJR〈f〉K[],B⊕x=e,G,ρ, otherwise

DJletrec g = v in eKR,B,G,ρ = letrec g = v in e′, if g ∈ fn(e′) (R11)
e′, otherwise
where e′ = DJletB inR〈e〉K[],∅,G′,ρ

G′ = G ∪ (g, v)
DJcasex of {ki xi → ei}KR,B,G,ρ = letDJB|xK[],∅,G,ρ (R12)

in casex of {
ki xi → DJ[ki xi/x]letB\x inR〈ei〉K[],∅,G,ρ

}
DJcase kj e of {ki xi → ei}KR,B,G,ρ= DJletB inR〈letxj = e in ej〉K[],∅,G,ρ (R13)
DJcasex e of {ki xi → ei}KR,B,G,ρ = letDJB|(fv(e) ∪ {x})K[],∅,G,ρ (R14)

in casexDJeK[],∅,G,ρ of {
ki xi → DJletB\(fv(e) ∪ {x}) inR〈ei〉K[],∅,G,ρ

}
DJcase e of {ki xi → ei}KR,B,G,ρ = DJeKR〈case []of {ki xi→ei}〉,B,G,ρ (R15)

Fig. 3. Driving algorithm

appear under a lambda or not inside all branches of a case. Our experience is
that this approximation is sufficient in practice.

The rules of the driving algorithm are ordered; i.e., all rules must be tried in
the order they appear. Rule R7 and rule R15 are the default fallback cases which
extend the given driving context R and zoom in on the next expression to drive.
Notice how rule R8 recursively applies the driving algorithm to the entire new
term letB inR〈[v/x]f〉, forcing a re-traversal of the new term with the hope of
further reductions.

Some expressions should be handled differently depending on their context.
If a constructor application appears in an empty context, there is not much we
can do except to drive the argument expressions (rule R3). On the other hand, if
the application occurs at the head of a case expression, we may choose a branch
based on the constructor and leave the arguments unevaluated in the hope of
finding fold opportunities further down the syntax tree (rule R13).

Rule R12 and rule R14 uses some new notation: B|x is the smallest prefix
of B that is necessary to define x and B\x is the largest suffix not necessary to
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strict(x) = {x}
strict(g) = ∅
strict(k e) = strict(e)
strict(λx.e) = ∅
strict(f e) = strict(f) ∪ strict(e)
strict(letx = e in f) = strict(e) ∪ (strict(f)\{x})
strict(letrec g = v in f) = strict(f)
strict(case e of {ki xi → ei}) = strict(e) ∪ (

⋂
(strict(ei)\xi))

Fig. 4. The strict variables of an expression

define x. Rule R10 uses ⊕ which we define as:

(B, y = e)⊕ x = e′
def
= (B ⊕ x = e′), y = e if y /∈ fv(e′)
def
= (B, y = e, x = e′) otherwise

The key idea in this improved supercompilation algorithm is to float let-
expressions into the branches of case-expressions. We accomplish this by adding
the bound expressions from let-expressions to our binding set B in rule R10.
We make sure that we do not change the order between definition and usage
of variables in rule R8 by extracting the necessary bindings outside of the case-
expression, and the remaining independent bindings are brought into all the
branches along with the surrounding context R.

The algorithm is allowed to move let-expressions into case-branches since
that transformation only changes the evaluation order, and non-termination is
the only effect present in our language.

4.1 Application Rule

Our extension does not require any major changes to the folding mechanism
that supercompilers use to ensure termination. Since our goal is not to study
termination properties of supercompilers we present a simplified version of the
folding mechanism which does not guarantee termination, but guarantees that if
the algorithm terminates the output is correct. The standard techniques [8,9,4]
for ensuring termination can be used with our extension.

In the driving algorithm rule R2 refer to Dapp( ), defined in Figure 5. Dapp( )
can be inlined in the definition of the driving algorithm, it is merely given a sep-
arate name for improved clarity of the presentation. Figure 5 contains some new
notation: we use σ for a variable to variable substitution and = for syntactical
equivalence of expressions.

The driving algorithm keeps a record of previously encountered applications
in the memoization list ρ; whenever it detects an expression that is equivalent (up
to renaming of variables) to a previous expression, the algorithm creates a new
recursive function hn for some n. Whenever an expression from the memoization
list is encountered, a call to hn is inserted.
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Dapp(g)R,B,G,ρ = hx if ∃(h, t)∈ρ . σt = letB inR〈g〉 (1)
where x = σ(fv(t))

Dapp(g)R,B,G,ρ = letrech = λx.e′ inhx if h ∈ fn(e′) (2a)
e′ otherwise (2b)

where (g, v) ∈ G,
e′ = DJR〈v〉K[],B,G,ρ′ ,
x = fv(letB inR〈g〉),
ρ′ = ρ ∪ (h, letB inR〈g〉) and
h fresh

Fig. 5. Driving of applications

5 Removing Unnecessary Traversals

The first example in Section 2 showed that there might be let-expressions in
case-branches where the computed results are never used in the branch. This
gives worse runtime performance than necessary since more intermediate results
have to be computed, and also increases the compilation time since there are
more expressions to transform. The only reason to have these let-expressions is
to preserve the termination properties of the input program.

We could remove these superfluous let-expressions if we knew that they were
terminating, something that would save both transformation time and execution
time. It is clear that termination is undecidable in general, but our experience
is that the functions that appear in practice are often recursive over the input
structure. Functions with this property are quite well suited for termination
analysis, for example the size-change principle [10,11].

Given a function terminates(e) that returns true if the expression e termi-
nates, we can augment the let-rule (R10) to incorporate the termination in-
formation and discard such expressions, shown in Figure 6. This allows the
supercompiler to discard unused expressions, i.e dead code, which saves both
transformation time and runtime.

DJletx = e in fKR,B,G,ρ = DJletB inR〈f〉K[],∅,G,ρ if terminates(e) and x /∈ fv(f)
DJletB inR〈[e/x]f〉K[],∅,G,ρ if x ∈ strict(f) and x ∈ linear(f)
DJR〈f〉K[],B⊕x=e,G,ρ otherwise

Fig. 6. Extended Let-rule (R10)

Since we leave the choice of termination analysis open, it is hard to discuss
scalability in general. The size-change principle has been used with good results
in partial evaluation of large logic programs [12] and there are also polynomial
time algorithms for approximating termination [13].
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6 Correctness

We need a class of expressions w that is essentially the union of the expressions
on weak head normal form (whnf) and expressions where the redex contains a
free variable, a:

a ::= x | a e
w ::= λx.e | k e | a

Lemma 1 (Totality). Let R〈e〉 be an expression such that

– R〈e〉 is well-typed
– if R 6= [ ] then e 6= w

then DJeKR,B,G,ρ is matched by a unique rule in Figure 3.

Proof. Follows the structure of the proof by Jonsson and Nordlander [14].

To prove that the algorithm does not alter the semantics we use the improve-
ment theory [15]. We define the standard notions of operational approximation
and equivalence and introduce a general context C which has zero or more holes
in the place of some subexpressions.

Definition 1 (Operational Approximation and Equivalence).

– e operationally approximates e’, e@
˜
e′, if for all contexts C such that C[e]

and C[e’] are closed, if evaluation of C[e] terminates then so does evaluation
of C[e’].

– e is operationally equivalent to e’, e ∼= e′, if e@
˜
e′ and e′@

˜
e

We use Sands’s definitions for improvement and strong improvement:

Definition 2 (Improvement, Strong Improvement).

– e is improved by e’, e D e′, if for all contexts C such that C[e], C[e’] are
closed, if computation of C[e] terminates using n calls to named functions,
then computation of C[e’] also terminates, and uses no more than n calls to
named functions.

– e is strongly improved by e’, e Ds e′, iff e D e′ and e ∼= e′.

which allows us to state the final theorem:

Theorem 1 (Total Correctness). Let R〈e〉 be an expression, and ρ an envi-
ronment such that

– the range of ρ contains only closed expressions, and
– fv(R〈e〉) ∩ dom(ρ) = ∅, and
– if R 6= [ ] then e 6= w
– the supercompiler DJeKR,B,G,ρ terminates

then R〈e〉 Ds ρ(DJeKR,B,G,ρ).

Proof. Similar to the total correctness proof by Jonsson and Nordlander [14].

Recall the simplified algorithm we have presented preserves the semantics
only if it terminates; however, termination of the supercompiler can be recovered
using a similar Dapp( ) as we did in our previous work [4].



76 Peter A. Jonsson and Johan Nordlander

7 Performance and Limitations

There are two aspects of performance that are interesting to the end user: how
long the optimization takes; and how much faster the optimized program is.

The work on supercompiling Haskell by Mitchell and Runciman [9] shows
that some problems remain for supercompiling large Haskell programs. These
problems are mainly related to speed, both of the compiler and of the trans-
formed program. When they profiled their supercompiler they found that the
majority of the time was spent in the homeomorphic embedding test, the test
which is used to ensure termination.

Our preliminary measurements show the same thing: a large proportion of
the time spent on supercompiling a program is spent testing for non-termination
of the supercompiler. This paper presents a stronger supercompiler at the cost
of larger expressions to test for the homeomorphic embedding. We estimate that
our current work ends up somewhere between Supero and our previous work
with respect to transformation time since we are testing smaller expressions
than Supero, at the expense of runtime performance.

The complexity of the homeomorphic embedding has been investigated sep-
arately by Narendran and Stillman [16] and they give an algorithm that takes
two terms e and f and decides if there is a risk of non-termination in time
O(size(e)× size(f)).

For the second dimension: it is well known that programs with many inter-
mediate lists have worse performance than their corresponding listless versions
[6]. We have shown that the output from our supercompiler does not contain
intermediate structures by manual transformations in Section 2. It is reasonable
to conclude that these programs would perform better in a microbenchmark. We
leave the question of performance of large real world programs open.

A limitation of our work is that there are still examples that our algorithm
does not give the desired output for. Given let x = (λy .y) 1 in (x , x ) a human
can see that the result after transformation should be (1, 1), but our super-
compiler will produce let x = 1 in (x , x ). Mitchell [17][Sec 4.2.2] has a strategy
to handle this, but we have not been able to incorporate his solution without
severely increasing the amount of testing for non-termination done with the
homeomorphic embedding. The reason we can not transform (λy .y) 1 in iso-
lation and then substitute the result is that the result might contain freshly
generated function names, which might cause the supercompiler to loop.

8 Related Work

8.1 Deforestation

Deforestation is a slightly weaker transformation than supercompilation [18].
Deforestation algorithms for call-by-name languages can remove all intermediate
structures from the examples we outlined in Section 1.
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Deforestation was pioneered by Wadler [1] for a first order language more
than fifteen years ago. The initial deforestation had support for higher order
macros which are incapable of fully emulating higher order functions.

Marlow and Wadler [19] addressed the restriction to a first-order language
when they presented a deforestation algorithm for a higher order language. This
work was refined in Marlow’s [20] dissertation, where he also related deforestation
to the cut-elimination principle of logic. Chin [21] has also generalised Wadler’s
deforestation to higher-order functional programs by using syntactic properties
to decide which terms can be fused.

Both Hamilton [22] and Marlow [20] have proven that their deforestation
algorithms terminate. More recent work by Hamilton [23] extends deforestation
to handle a wider range of functions, with an easy-to-recognise treeless form,
giving more transparency for the programmer.

Alimarine and Smetsers [24] have improved the producer and consumer anal-
yses in Chin’s [21] algorithm by basing them on semantics rather than syntax.
They show that their algorithm can remove much of the overhead introduced
from generic programming [25].

8.2 Supercompilation

Except for our previous work [4], the work on supercompilation has been for call-
by-name semantics. All call-by-name supercompilers succeed on the examples we
outlined in Section 1, and are very close algorithmically to our current work.

Supercompilation [26,27,28,29] removes intermediate structures and achieves
partial evaluation as well as some other optimisations. Scp4 [30] is the most
well-known implementation from this line of work.

The positive supercompiler [2] is a variant which only propagates positive
information, such as equalities. The propagation is done by unification and the
work highlights how similar deforestation and positive supercompilation really
are. We have previously investigated the theoretical foundations for positive
supercompilation for strict languages [4]. Narrowing-driven partial evaluation
[31,32] is the functional logic programming equivalent of positive supercompi-
lation but formulated as a term rewriting system. They also deal with non-
determinism from backtracking, which makes the algorithm more complicated.

Strengthening the information propagation mechanism to propagate not only
positive but also negative information yields perfect supercompilation [5,33,34].
Negative information is the opposite of positive information – inequalities. These
inequalities can for example be used to prune branches that we can be certain
are not taken in case-expressions.

More recently, Mitchell and Runciman [9] have worked on supercompiling
Haskell. Their algorithm is closely related to our supercompiler, but their work
is limited to call-by-name. They report runtime reductions of up to 55% when
their supercompiler is used in conjunction with GHC.
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8.3 Short Cut Fusion

Short cut deforestation [35,6] takes a different approach to deforestation, sacri-
ficing some generality by only working on lists.

The idea is that the constructors Nil and Cons can be replaced by a foldr
consumer, and a special function build is used to allow the transformation to
recognize the producer and enforce the type requirement. Lists using build/foldr
can easily be removed with the foldr/build rule: foldr f c (build g) = g f c.

This forces the programmer or compiler writer to make sure list-traversing
functions are written using build and foldr, thereby cluttering the code with
information for the optimiser and making it harder to read and understand for
humans.

Takano and Meijer [36] generalized short cut deforestation to work for any
algebraic datatype through the acid rain theorem. Ghani and Johann [37] have
also generalized the foldr/build rule to a fold/superbuild rule that can eliminate
intermediate structures of inductive types without disturbing the contexts in
which they are situated.

Launchbury and Sheard [38] worked on automatically transforming programs
into suitable form for shortcut deforestation. Onoue et al. [39] showed an im-
plementation of the acid rain theorem for Gofer where they could automatically
transform recursive functions into a form suitable for shortcut fusion.

Type-inference can be used to transform the producer of lists into the ab-
stracted form required by short cut deforestation, and this is exactly what Chitil
[40] does. Given a type-inference algorithm which infers the most general type,
Chitil is able to determine the list constructors that need to be replaced.

Takano and Meijer [36] noted that the foldr/build rule for short cut deforesta-
tion had a dual. This is the destroy/unfoldr rule used by Svenningsson [41] which
has some interesting properties. The method can remove all argument lists from
a function which consumes more than one list, addressing one of the main crit-
icisms against the foldr/build rule. The technique can also remove intermediate
lists from functions which consume their lists using accumulating parameters, a
known problematic case that most techniques can not handle.

The method is simple, and can be implemented the same way as short cut
deforestation. It still suffers from the drawback that the programmer or compiler
writer has to make sure the list traversing functions are written using destroy
and unfoldr.

In more recent work Coutts et al. [7] have extended these techniques to
work on functions that handle nested lists, list comprehensions and filter-like
functions.

9 Conclusions

We have presented an improved supercompilation algorithm for a higher-order
call-by-value language. Our extension is orthogonal to the information propaga-
tion by the algorithm. Through examples we have shown that the algorithm can
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remove multiple intermediate structures, which previous algorithms could not,
such as the zip examples in Section 2.

9.1 Future Work

We are currently working on improving the scalability of supercompilation for
real programs. MLTon [42] has successfully performed whole program compila-
tion of programs up to 100 000 lines, which suggests that any bottlenecks should
occur in the supercompiler, not the other parts of the compiler.

An anonymous referee suggested performing on-demand termination analysis
on already simplified terms. We are looking into this possibility. Another anony-
mous referee suggested a characterization, such as the treeless form by Wadler
[1], of input terms that would guarantee termination of the supercompiler as
specified in this paper.
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Abstract. We show that the power of supercompilation can be in-
creased by constructing a hierarchy of supercompilers, in which a lower-
level supercompiler is used by a higher-level one for proving improvement
lemmas. The lemmas thus obtained are used to transform expressions
labeling nodes in process trees, in order to avoid premature generaliza-
tions. Such kind of supercompilation, based on a combination of sev-
eral metalevels, is called higher-level supercompilation (to differentiate
it from higher-order supercompilation related to transforming higher-
order functions). Higher-level supercompilation may be considered as an
application of a more general principle of metasystem transition.

1 Introduction

The concept of metasystem transition was introduced by V.F.Turchin in his
1977 book The Phenomenon of Science [26]. In the context of computer science,
Turchin gives the following (somewhat simplified) formulation of the main idea
of metasystem transition [28]:

Consider a system S of any kind. Suppose that there is a way to make
some number of copies of it, possibly with variations. Suppose that these
systems are united into a new system S′ which has the systems of the S
type as its subsystems, and includes also an additional mechanism which
somehow examines, controls, modifies and reproduces the S-subsystems.
Then we call S′ a metasystem with respect to S, and the creation of S′ a
metasystem transition. As a result of consecutive metasystem transitions
a multilevel hierarchy of control arises, which exhibits complicated forms
of behavior.

Futamura projections [6] may serve as a good example of metasystem tran-
sition. Let p be a program, i an interpreter, and s a program specializer. Then
s(i, p) may be regarded as a compiled program (the “first projection”), s(s, i) as a
compiler (the “second projection”) and s(s, s) as a compiler generator (the “third

? Supported by Russian Foundation for Basic Research projects No. 08-07-00280-a
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projection”). (The second Futamura projection is also referred to by Ershov as
“Turchin’s theorem of double driving” [5].)

In the second projection the evaluation of s(s, i) involves two copies of the
specializer s, the second copy “examining and controlling” the first one. In the
third projection, there are 3 copies of s, the third one “controlling” the second one
“controlling” the first one. Moreover, as shown by Glück [7], there may be con-
sidered the “fourth” Futamura projection, corresponding to the next metasystem
transition!

Futamura projections, however, are not the only possible way of exploiting
the idea of metasystem transition by combining program transformers. In the
present paper we consider another technique of constructing a multilevel hierar-
chy of control using supercompilers as its building blocks.

A supercompiler is a program transformer based on supercompilation [27],
a program transformation technique bearing close relation to the fold/unfold
method by Burstall and Darlington [4]. Unfortunately, “pure” supercompilation
is known not to be very good at transforming non-linear (i.e. containing repeated
variables) expressions and functions with accumulating parameters.

We argue, however, that the power of supercompilation can be increased by
combining several copies of a “classic” supercompiler and making them control
each other. Such kind of supercompilation, based on a combination of several
metalevels will be called higher-level supercompilation (to differentiate it from
higher-order supercompilation related to transforming higher-order functions).

The technique suggested in the paper is (conceptually) simple and modular,
and is based on the use of improvement lemmas [20,21], which are automatically
generated by lower-level supercompilers for a higher-level supercompiler.

2 Higher-Level Supercompilation

2.1 What is a “zero-level” supercompiler?

The descriptions of supercompilation given in the literature differ in some sec-
ondary details, irrelevant to the main idea of higher-level supercompilation. We
follow the terminology and notation used by Sørensen and Glück [24,23,25].

All program transformation examples considered in the paper have been car-
ried out by HOSC [13,14], a higher-order supercompiler whose general structure
is shown in Fig. 1.

2.2 Accumulating parameter: “zero-level” supercompilation

Let us try to apply the supercompiler HOSC [13] to the program shown in Fig. 2.
At the beginning, a few steps of driving produce the process tree shown in Fig. 3.

At this point the whistle signals that there is a node b embedding a previously
encountered node a, but b is not an instance of a:

case double x Z of {Z → True; S y → odd y);}
Ec case double n (S (S Z)) of {Z → True; S m → odd m;}
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def scp(tree)
b = unprocessed_leaf(tree)
if b == null
return makeProgram(tree)

if trivial(b)
return scp(drive(b, tree))

a = ancestor(tree, b, renaming)
if a != null
return scp(fold(tree, a, b))

a = ancestor(tree, b, instance)
if a != null
return scp(abstract(tree, b, a))

a = ancestor(tree, b, whistle)
if a == null
return scp(drive(b, tree))

return scp(abstract(tree, a, b))

– unprocessed_leaf(tree) returns an unprocessed leaf b in the process tree.
– trivial(b) checks whether the leaf b is “trivial”. (A leaf is trivial if driving it does

not result in unfolding a function call or applying a substitution to a variable.)
– drive(b,tree) performs a driving step for a node b and returns the modified tree.
– ancestor(tree,b,renaming) returns a node a such that b is a renaming of a.
– ancestor(tree,b,instance) returns a node a such that b is an instance of a.
– ancestor(tree,b,whistle) returns a node a such that a is homeomorphically

embedded in b by coupling.
– fold(t,a,b) makes a cycle in the process tree from b to a.
– abstract(tree,a,b) generalizes a to b.

Fig. 1. “Zero-level” supercompilation algorithm

data Bool = True | False;
data Nat = Z | S Nat;

even (double x Z) where

even = λx → case x of { Z → True; S x1 → odd x1;};
odd = λx → case x of { Z → False; S x1 → even x1;};

double = λx y → case x of { Z → y; S x1 → double x1 (S (S y));};

Fig. 2. even (double x Z): source program

Hence, HOSC has to throw away the whole subtree under a and “generalize” a
by replacing a with a new node a′, such that a and b are instances of a′. Then
the supercompilation continues to produce the residual program shown in Fig. 4.

This result is correct, but it is not especially exciting! In the goal expression
even (double x Z) the inner function double multiplies its argument by 2, and
the outer function even checks whether this number is even. Hence, the whole
expression never returns False. But this can not be immediately seen from the
residual program, the program text still containing False.
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even (double x Z)

case (double x Z) of {Z → True; S y → odd y;}

case case x of {Z→Z; S z→double z (S (S Z));}
of {Z->True; S y->odd y;}

True
x = Z

case (double n (S (S Z))) of {Z → True; S m → odd m;}

x = S n

Fig. 3. even (double x Z): driving

letrec
f=λw2 λp2→
case w2 of {
Z →
letrec g=λr2→
case r2 of {
S r → case r of {Z → False; S z2 → g z2;};
Z → True;}

in g p2;
S z → f z (S (S p2));

}
in f x Z

Fig. 4. The result of “zero-level” supercompilation

2.3 Accumulating parameter: applying a lemma

As was pointed out by Burstall and Darlington [4], the power of a program
transformation system can be increased by enabling it to use “laws” or “lemmas”
(such as the associativity and commutativity of addition and multiplication). In
terms of supercompilation it amounts to replacing a node in the process tree
with an “equivalent” one.

Let us return to the tree in Fig. 3. The result of supercompilation was not
good enough, because HOSC had to generalize a node, and a generalization
resulted in a “loss of precision”. But we can avoid generalization by making use
of the following (mysterious) equivalence

case double n (S (S Z)) of {Z → True; S m → odd m;} ∼=
∼= even (double n Z)

Since the node even (double n Z) is a renaming of an upper one, the super-
compiler can now form a cycle to produce the program shown in Fig. 5. Note that
this time there is no occurrences of False, hence the supercompiler succeeded
in proving that False can never be returned by the program.
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letrec f=λt→
case t of {Z → True; S s → f s;}

in f x

Fig. 5. The result of applying a lemma

def scp(tree, n)
b = unprocessed_leaf(tree)
if b == null
return makeProgram(tree)

if trivial(b)
return scp(drive(b, tree), n)

a = ancestor(tree, b, renaming)
if a != null
return scp(fold(t, a, b), n)

a = ancestor(tree, b, instance)
if a != null
return scp(abstract(tree, b, a))

a = ancestor(tree, b, whistle)
if a == null
return scp(drive(b, tree), n)

if n > 0
e = findEqExpr(b.expr, n)
if e != null
return scp(replace(tree, b, e), n)

return scp(abstract(tree, a, b))

def findEqExpr(e1, n)
e = scp(e1, n-1)
cands = candidates(e1, n)
for cand <- cands
if equivalent(

scp(cand, n-1), e)
return cand

return null

def candidates(e1, n)
. . .

. . .

Fig. 6. “Multi-level" supercompilation algorithm

Hence, there are good reasons to believe that lemmas are a good thing, but
there appear two questions: (1) how to prove lemmas, and (2) how to find useful
lemmas.

2.4 Proving lemmas by supercompilation

In [15] we have shown that the supercompiler HOSC [13] may be used for prov-
ing interesting equivalences of higher-order expressions. The technique is quite
straightforward. Let e1 and e2 be expressions appearing in a program p. Let e′1
and e′2 be the results of supercompiling e1 and e2 with respect to p. Then, if
e′1 and e′2 are the same (modulo alpha-renaming), then the original expressions
e1 and e2 are equivalent (provided that the supercompiler strictly preserves the
equivalence of programs). Since e1 and e2 may contain free variables, the use
of a higher-order supercompiler enables us to prove equalities with universal
quantification over functions and infinite data types by using a higher-order
supercompiler.
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def scp(tree, n)
b = unprocessed_leaf(tree)
if b == null
return [makeProgram(tree)]

if trivial(b)
return scp(drive(b, tree), n)

a = ancestor(tree, b, renaming)
if a != null
return scp(fold(t, a, b), n)

a = ancestor(tree, b, instance)
if a != null
return scp(abstract(tree, b, a))

a = ancestor(tree, b, whistle)
if a == null
return scp(drive(b, tree), n)

progs = scp(abstract(tree, a, b))
if n > 0
for e <- findEqExpr(b.expr, n)
progs ++= scp(replace(tree, b, e), n)

return progs

def findEqExpr(e1, n)
es = scp(e1, n-1)
cands = candidates(e1, n)
exps = []
for cand <- cands
if not_disjoint(

scp(cand, n-1), es)
exps = exps + cand

return exps

def candidates(e1, n)
. . .

. . .

Fig. 7. “Multi-level" supercompilation algorithm: multiple residual programs

Thus the reasoning about operational equivalence (∼=) of programs can be
reduced to a trivial check of the syntactic equality of supercompiled programs.
Since all residual programs produced by HOSC are expressions (that may contain
letrec-subexpressions), checking the equality of residual programs boils down to
a syntactical comparison of expressions.

Generally speaking, the idea of proving equivalence by normalization is a well-
known one, being a standard technique in such fields as computer algebra. The
idea of using supercompilation for normalization is due to Lisitsa and Webster
[17], who have successfully applied supercompilation for proving the equivalence
of programs written in a first-order functional language, on condition that the
programs deal with finite input data and are guaranteed to terminate. Later it
has been found [15,13] that these restrictions can be lifted in cases where the
supercompiler deals with programs in a lazy functional language and preserves
the termination properties of programs.

2.5 Stacking supercompilers, jumping to higher-level
supercompilation

As we have seen the power of supercompilation can be increased by using lem-
mas (i.e. replacing some expressions with equivalent ones). On the other hand,
supercompilers can be used for checking the equality of expressions. Hence, re-
calling the principle of metasystem transition [26,28], we come to the following
idea: let us construct a tower of supercompilers, the higher-level ones running
the lower-level ones in order to obtain useful lemmas.
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This can be done by adding to the function scp(tree) shown in Fig. 1 an
additional parameter n, the “level” the supercompiler is invoked at. The modified
supercompilation algorithm is shown in Fig. 6.

Note that for n = 0 the algorithm degrades to the “classic” supercom-
pilation. But in cases where n > 0 the supercompiler calls the function
findEqExpr(b.expr,n) passing to it the expression in the node b and the cur-
rent level. The function tries to produce an expression equivalent to b.expr by
generating a set of candidate expressions and selecting an expression equiva-
lent to b.expr. The check for equivalence is performed by invoking the same
supercompiler at the lower level n - 1.

2.6 Generating sets of residual programs

The algorithm in Fig. 6 assumes that there is a single result of supercompilation.
However, there are certain points in the process of supercompilation, where the
supercompiler has an opportunity to make a choice among several options, so
that, given a source program, several (equivalent) residual programs may be
generated.

This may be used for increasing the power of the supercompilation-based
equality check. Suppose we have to check for equivalence two expressions e1
and e2. Then, instead of generating and comparing just two residual expressions
e′1 and e′2, we can supercompile e1 and e2 to produce two sets of residual ex-
pressions and try to find a residual expression common to both sets (modulo
alpha-renaming).

To implement this idea we need a version of a supercompilation algorithm
producing a set of residual programs (see Fig. 7). This version, instead of choos-
ing an arbitrary acceptable expression from the set of candidate expressions,
returns the set of all acceptable expressions. Note that for any n the set of resid-
ual programs produced by the algorithm includes the result returned by the
zero-level supercompiler.

2.7 A few open questions

Fig. 6 and Fig. 7 present the general idea of higher-level supercompilation, but
there still remains a few open questions.

Correctness At the first glance, replacing an expression with an equivalent
one looks as a “natural” and “safe-by-construction” operation. And yet, as shown
by Sands [20,21], the unrestricted use of equivalences may lead to incorrect
transformations that do not preserve the meaning of programs.

How to generate candidate expressions Supercompilation can be used
for checking the equivalence of expressions, but it does not help us in finding
candidate expressions that are worth being checked for equivalence.
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3 Correctness = equivalence + improvement

3.1 Notation

It is clear that the meaning of expressions may depend on the context. Thus,
to avoid making our notation unnecessarily cumbersome, when speaking about
the equivalence of expressions, we will assume that the expressions are evaluated
and supercompiled in the context of the same program.

We use SC[[e]] to denote the expression produced by supercompiling the ex-
pression e by a “classic”, “zero-level” supercompiler, and e ≡ e′ to denote the fact
that e is the same as e′ (modulo alpha-renaming).

3.2 Operational equivalence

Definition 1 (Operational approximation). An expression e operationally
approximates e′, e@

˜
e′, if for all contexts C such that C[e], C[e′] are closed, if

the evaluation of C[e] terminates then so does the evaluation of C[e′].

Definition 2 (Operational equivalence). An expression e is operationally
equivalent to e′, e ∼= e′ if e@

˜
e′ and e′@

˜
e.

In the following we assume the supercompilers to preserve operational equiv-
alence, i.e. that e′ = SC[[e]] implies e′ ∼= SC[[e]] (which is true of the supercompiler
HOSC [13]).

3.3 Improvement

The replacement of an expression e with an equivalent expression e′, followed by
a fold, may result in producing an incorrect residual program (some examples
can be found in [21]).

Definition 3 (Improvement). An expression e is improved by e′, e .
˜
e′, if

for all contexts C such that C[e] and C[e′] are closed, if the computation of C[e]
terminates using n function calls, then the computation of C[e′] also terminates,
and uses no more than n function calls.

As has been shown by Sands [21], the replacement of an expression e1 with an
expression e2 will not violate the correctness of transformation if the following
conditions are met: e1 ∼= e2 and e1 .˜

e2.

Definition 4 (Improvement lemma). A pair (e1, e2) is an improvement
lemma if e1 ∼= e2 and e1 .˜

e2.
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3.4 Checking the improvement relation by supercompilation

Let e1 and e2 be expressions whose equivalence has been proven by supercom-
pilation. Does it mean that one of the expressions is an improvement over the
other one? Not at all!

Supercompiling the following two expressions with respect to the program
shown in Fig. 10 proves them to be operationally equivalent:

or (even n) (odd n)
∼= case (even n) of {True → True; False → odd (S (S n));}

However, neither is an improvement over another one. Indeed, if n = Z, the
evaluation of the expressions involves 2 and 1 function calls, respectively. But, if
n = S Z, the evaluation involves 5 and 6 function calls. Therefore, this lemma
is unsafe to be used in program transformation.

Fortunately, the check that e1 .˜
e2 holds for two expressions e1 and e2, such

that e1 ∼= e2, can also be performed by supercompilation! And this can be done
almost for free in the following way.

In order to check e1 and e2 for equivalence, we have to supercompile them to
e′1 and e′2. The check for equivalence succeeds if e′1 and e′2 are the same (modulo
alpha-renaming). Therefore, e′1 and e′2 contain insufficient information to make
any conclusions about e2 being an improvement over e1. However, the process
trees produced by supercompiling e1 and e2 contain more information than the
residual expressions.

Namely, let us examine the process trees and mark with a star (*) the edges
corresponding to an unfolding (a function call). For example, supercompiling
the expressions considered above produces the process trees shown in Fig. 12
and Fig. 14 (the subtrees for odd x are omitted for brevity). Now the starred
edges provide some information that can be used for checking that an expression
improves another one. But this information is not accessible from outside. But,
in the case of HOSC [13], this information can be made visible by modifying the
algorithm that converts process trees into residual expression.

The modified algorithm converts starred edges into annotations in residual
expressions. When traversing a starred edge, the residual expression produced
by traversing the (single) child node is annotated with a star (*). In this way the
information about unfolds is recorded in residual expressions, so that a lower-
level supercompiler can be used as a “black box”.

For example, Fig. 13 and Fig. 16 show the annotated programs produced
from the process trees in Fig. 12 and Fig. 14.

Now, let .∗
˜

denote a binary relation on expressions such that e .∗
˜
e′ iff (1)

e and e′ differ only in their annotations, and (2) e can be transformed into e′
by erasing some stars in e. See Fig. 8 for a more formal definition, where nφ
denotes a functor φ prefixed with n stars. (It is curious to note that .∗

˜
can be

considered as a special case of homeomorphic embedding relation.)

Theorem 1. Let e′1 = SC[[e1]] and e′2 = SC[[e1]]. If e′1 ≡ e′2 and e′1 .
∗
˜
e′2, then

e1 .˜
e2.
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m ≥ n ∀i : ei .∗˜ e′i
mφ(e1, . . . , ek) .

∗˜ nφ(e′1, . . . , e
′
k)

SC[[e1]] ∼= SC[[e2]] SC[[e1]] .∗˜ SC[[e2]]
e1 .˜ e2

Fig. 8. Estimation of improvement based on annotated supercompiled expres-
sions

Proof. Since e′1 ≡ e′2, e′1 is the same as e′2 (modulo annotations and a bound
variable renaming). Therefore, if we put the expressions in the same context
C and try to evaluate C[e′1] and C[e′2] (disregarding the annotations), this will
result in two sequences of reduction steps, differing only in the number of stars
encountered during computation. Since e′1 .∗˜

e′2, after any number of reduction
steps, the number of stars encountered in the evaluation of C[e′2] cannot be
greater that the number of stars encountered in the evaluation of C[e′1], and
the stars correspond to unfoldings in the original expressions e1 and e2. So,
by evaluating C[e′1] and C[e′2] and counting stars we can count the number of
unfolds in the evaluation of C[e1] and C[e2]. Hence, the number of unfolds in the
evaluation of C[e2] is no more than in the evaluation of C[e1]. Therefore e1 .˜

e2.

Thus, by examining annotated supercompiled expressions, we can check the
improvement relation for the original expressions. For example, consider the
annotated supercompiled expressions for

or (even n) (odd n)

and

case (even n) of {True → True; False → odd (S (S n));}

shown in Fig. 13 and Fig. 16. Since the supercompiled expressions are not related
by .∗

˜
, we cannot make the conclusion that the original expressions are related

by .
˜
.

4 A proof-of-concept implementation

Although, the general idea of higher-level supercompilation is conceptually sim-
ple, there are a number of problems to be solved in a practical implementation.

– Which “zero-level” supercompiler to use as the basic for implementing higher-
level supercompilation?

– How to guarantee the correctness of transformations?
– How to generate useful lemmas?
– How to ensure the termination of higher-level supercompilation?

To show the feasibility of higher-level supercompilation we have implemented
a simple “proof-of-concept” higher-level supercompiler HLSC by modifying the
supercompiler HOSC [13,15]. HOSC has been chosen because it (1) preserves
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the meaning of programs (including their termination properties), (2) is able to
prove lemmas with universal quantification over functions and infinite data types,
(3) generates residual programs in the form of expressions, which enables the
program equivalence checking to be reduced to expression equivalence checking.

The correctness of the transformations is guaranteed, since HLSC uses lem-
mas that are improvement ones. Note, however, that the check for improvement
is based on “zero-level” supercompilation, for which reason HLSC currently im-
plements only a two-level hierarchy of supercompilers, rather than a multi-level
one, consisting of the “top” and “bottom” supercompilers.

The least elaborated points are the search for useful lemmas and ensuring
the termination of higher-level supercompilation.

S[[v]] = 1
S[[c ei]] = 1 +

∑
i S[[ei]]

S[[λv → e]] = 1 + S[[e]]
S[[case e0 of {ci vik → ei;}]] = 1 + S[[e0]] +

∑
i S[[ei]]

S[[e1 e2]] = S[[e1]] + S[[e2]]

Fig. 9. The size of expression

Presently the generation of candidate expressions is implemented in a rather
crude and straightforward way. When the top supercompiler finds a node b con-
taining an expression e and embedding a previously encountered node a, it gen-
erates and tries all expressions e′ whose size (see Fig. 9) is less than the size of e.
Then the bottom supercompiler is used to check whether (e, e′) is an improve-
ment lemma and the search for a lemma stops.

Ensuring the termination of the top supercompiler is an exciting problem
that requires further investigation. The termination of zero-level supercompila-
tion is achieved by the check for homeomorphic embedding and generalization
[23,22,13]. However, the main idea of higher-level supercompilation (in the ver-
sion presented in Fig. 6) consists in avoiding generalization. When an embedding
is detected, the use of an improvement lemma enables the supercompiler to avoid
generalization and continue to build the process tree. And this, potentially, may
lead to non-termination.

From the practical point of view, though, the non-termination can be avoided
by imposing some restrictions on the use of lemmas. A simple and straightfor-
ward solution is the following.

Suppose, the check for embedding finds that there an upper node a is embed-
ded in a lower node b. Then b is replaced with b′ with the aid of an improvement
lemma, and supercompilation continues without generalization. But this fact
is recorded in the node a, so that next time when a gets embedded in another
node, no lemma will be used, and a will be generalized as in the case of zero-level
supercompilation.
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data Bool = True | False;
data Nat = Z | S Nat;

or (even m) (odd m) where

even = λx → case x of { Z → True; S x1 → odd x1;};
odd = λx → case x of { Z → False; S x1 → even x1;};

or = λx y → case x of { True → True; False → y;};

Fig. 10. or (even m) (odd m): the source program

or (even m) (odd m)

case (even m) of {True → True; False → (odd m);}

case (case m of {Z -> True; S x -> odd x;})
of {True -> True; False -> odd m;}

True

m = Z

case (odd x) of {True -> True; False -> odd (S x);}

case (case x of {Z -> False; S n -> even n;})
of {True -> True; False -> odd (S x);}

True

x = Z
case (even n) of
{True -> True; False -> odd (S (S n));}

x = S n

m = S x

Fig. 11. or (even m) (odd m): the whistle blows

To some extent this idea is alike to “cross-fertilization” used by Boyer and
Moore [2] in their theorem prover. They argue that the induction hypothesis
should be used just once, and then thrown away. (And then comes the turn of
generalization.)

5 Examples

5.1 Supercompiling a non-linear expression

Let us try to supercompile the program shown in Fig. 10. We know in advance
that the expression or (even m) (odd m) can never return False, since a nat-
ural number m is either even or odd. But this cannot be readily seen from
the program’s text! After a few driving steps, we get the process tree shown in
Fig. 11. At this point an embedding (by coupling) is detected:
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or (even m) (odd m)

let x=m in
case even m of {True -> True; False -> odd x;}

case (even m) of {True -> True; False -> odd x;}

case (case m of {Z -> True; S y -> odd y;})
of {True -> True; False -> odd x;}

True

m = Z

case (odd y) of {True -> True; False -> odd x;}

case (case y of {Z -> False; S z -> even z;})
of {True -> True; False -> odd x;}

odd x

y = Z
case (even z) of
{True -> True; False -> odd x;}

y = S z

*

m = S y

*

*

Fig. 12. or (even m) (odd m): after generalization

*(letrec f=*(λv→
case v of {
Z → True;
S p →
*(case p of {
Z →
letrec g = *(λw→
case w of {
Z → False;
S t → *(case t of {Z → True; S z → g z;});})

in g m;
S x → f x;

});
})

in f m)

Fig. 13. or (even m) (odd m): the result of “zero-level” supercompilation
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let x=n in
case even n of {True -> True; F -> odd (S (S x));}

case (even n)
of {True -> True; False -> odd (S (S x));}

case (case n of {Z -> True; S y -> odd y;})
of {True -> True; False -> odd (S (S x));}

True

n = Z
case (odd y)
of {True -> True; False -> odd (S (S x));}

case (case y of {Z -> False; S z -> even z;})
of {True -> True; False -> odd (S (S x));}

odd (S (S x))

even (S x)

odd x
*

*

y = Z
case (even z) of
{True -> True; False -> odd (S (S x));}

y = S z

*

n = S y

*

Fig. 14. case even n of {True → True;False → odd (S (S n)); }: annotated
process tree

case (even m) of {True → True; False → (odd m);}
Ec case (even n) of {True → True; False → (odd (S (S n)));}

But the second expression is not an instance of the first one, for which reason
a folding cannot be performed. So the zero-level supercompiler HOSC would
perform a generalization by replacing the first expression with the let-expression:

let x = m in case (even m) of {True → True; False → (odd x);}

Then it would continue by transforming the body of the let-expression, instead
of the original expression, thereby “forgetting” that x and m have the same
value. This loss of information would result in the residual program in Fig. 13,
containing False, despite the fact that False can never be returned by the
program.

The higher-level version of HOSC, however, tries to find and apply an im-
provement lemma. The first lemma it finds has the size 5:

case (even n) of {True → True; False → (odd (S (S n)));}
∼= or (even n) (odd n)

But this lemma is not an improvement one, and the higher-level supercompiler
rejects it by supercompiling its left and right sides with the bottom supercompiler
to produce annotated expressions in Fig. 16 and Fig. 13, respectively.
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let x=n in
case even n of {True -> True; False -> odd x;}

case (even n) of {True -> True; False -> odd x;}

case (case n of {Z -> True; S y -> odd y;})
of {True -> True; False -> odd x;}

True

n = Z

case (odd y) of {True -> True; False -> odd x;}

case (case y of {Z -> False; S z -> even z;})
of {True -> True; False -> odd x;}

odd x

y = Z
case (even z) of
{True -> True; False -> odd x;}

y = S z

*

n = S y

*

Fig. 15. case even n of {True → True;False → odd n; }: annotated process
tree

letrec f=*(λv→
case v of {
Z → True;
S p →
*(case p of {
Z →
**(letrec g = *(λw→
case w of {
Z → False;
S t → *(case t of {Z → True; S z → g z;});})

in g n);
S x → f x;

};)
})

in f n

Fig. 16. case even n of {True → True;False → odd (S (S n)); }: annotated
residual program
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letrec f=*(λv→
case v of {
Z → True;
S p →
*(case p of {
Z →
(letrec g = *(λw→
case w of {
Z → False;
S t → *(case t of {Z → True; S z → g z;});})*

in g n);
S x → f x;

};)
})

in f n

Fig. 17. case even n of {True → True;False → odd n; }: annotated residual
program

letrec f=λw→
case w of {
Z → True;
S x → case x of { Z → True; S z → f z;};

}
in f m

Fig. 18. or (even m) (odd m): the result of higher-level supercompilation

However, there exist two improvement lemmas of size 6:

case (even n) of {True → True; False → odd (S (S n));}
.˜ case (even n) of {True → True; False → odd n;}

case (even n) of {True → True; False → odd (S (S n));}
.˜ case (odd n) of {True → odd n; False → True;}

The higher-level HOSC finds and applies the first one, thereby avoiding gener-
alization and producing the program in Fig. 18. Now False does not appear in
the program!

5.2 Accumulating parameter: using an improvement lemma

Let us reconsider the program with an accumulating parameter shown in Fig. 2.
If we try to supercompile it, the whistle blows for the following expressions:

case double x Z of {Z → True; S y → odd y);}
Ec case double n (S (S Z)) of {Z → True; S m → odd m;}
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There are two improvement lemmas (of minimal size):

case double n (S (S Z)) of {Z → True; S m → odd m;}
.˜ case double n (S Z) of {Z → True; S m → even m;}

case double n (S (S Z)) of {Z → True; S m → odd m;}
.˜ case double n (S Z) of {Z → False; S m → even m;}

The higher-level HOSC finds and applies the first one and, after some driving,
the whistle blows for the second time:

case double n (S Z) of {Z → True; S m → even m;}
Ec case double p (S (S (S Z))) of {Z → True; S m → even m;}

Again, there are two improvement lemmas (of minimal size):

case double p (S (S (S Z))) of {Z → True; S m → even m;}
.˜ case double p (S Z) of {Z → True; S m → even m;}

case double p (S (S (S Z))) of {Z → True; S m → even m;}
.˜ case double p (S Z) of {Z → False; S m → even m;}

The application of the first lemma enables a fold to be performed without
generalization, so that the higher-level HOSC produces the program in Fig. 19.

case x of {
Z → True;
S y1 →
letrec f=λt2→
case t2 of {Z → True; S u2 → f u2;}

in f y1;
}

Fig. 19. even (double x Z): the result of higher-level supercompilation

6 Discussion and conclusion

The main idea of higher-level supercompilation is based on the principle of meta-
system transition [27,28].

Another approach to increasing the power of supercompilation based on
metasystem transition is distillation [8,10,9].

In many cases distillation and higher-level supercompilation produce simi-
lar results, but, seemingly, an advantage of higher-level supercompilation is its
conceptual simplicity and modularity: it can be implemented by a slight modi-
fication of a “classic” supercompiler, adding a (conceptually) trivial lemma gen-
erator, and making several copies of the same supercompiler to interact. Since
the lemma generator uses the supercompiler as a “black box”, its design does not
depend on the subtle details of the supercompilation process.
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Our current implementation of higher-level supercompilation is a proof-of-
concept one, is rather “naive”, and can be improved in a variety of ways.

First, the higher-level supercompilation algorithm shown in Fig. 6 tries to
apply a lemma only to the whole embedding (lower) expression. But lemmas
could be applied in a more refined way.

– An (instance of an) improvement lemma could be applied to a subexpression
of the embedding expression.

– To avoid generalization, an (instance of an) improvement lemma could also
be applied to a (sub)expression of the embedded (upper) expression.

Second, the search for lemmas is implemented in a straightforward way: no
attempt is made to take into account the structure of the embedding (lower) and
embedded (upper) expressions. However, there are a few techniques developed
in the field of inductive theorem proving (like difference matching [1], rippling
[3] and divergence critic [29]) that could be used in implementing a more refined
lemma generator.

Higher-level supercompilation does not depend on minor implementation de-
tails of the supercompiler it is based upon. However, some properties of the
supercompiler do matter. First of all, the check whether a pair of expressions
forms an improvement lemma [20,21] relies on the supercompiler preserving ter-
mination properties of programs [15,13]. This requirement is not met by all su-
percompilers. For example, the supercompiler SCP4 [16] dealing with programs
in Refal, a strict first-order functional language, may extend the domain of a
transformed function, for which reason the equivalence of expressions can be
proven by supercompilation only for total expressions operating on finite data
structures [17].

During supercompilation, termination properties are easier to preserve for a
lazy functional language, than for a strict one. Nevertheless, Jonsson [11] suc-
ceeded in developing a termination-preserving supercompilation technique for a
higher-order call-by-value language. Therefore, higher-level supercompilation is
certainly applicable to higher-order strict languages.

Since any residual program produced by HOSC is a self-contained expres-
sion, the check for equality and improvement amounts to a trivial comparison
of expressions. In the case of a supercompiler like Supero [19,18], residual pro-
grams may have less trivial structure, therefore, comparing them for syntactic
isomorphism may be more intricate that in case of HOSC.

In principle, higher-level supercompilation should be implementable also on
the basis of a supercompiler for an imperative or object oriented language, such
as the Java supercompiler by Klimov [12], but there remains a number of tech-
nical problems to be investigated.
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Abstract. We study an approach for verifying the correctness of a sim-
plified supercompiler in Coq. While existing supercompilers are not very
big in size, they combine many different program transformations in in-
tricate ways, so checking the correctness of their implementation poses
challenges. The presented method relies on two important technical fea-
tures to achieve a compact and modular formalization: first, a very lim-
ited object language; second, decomposing the supercompilation process
into many sub-transformations, whose correctness can be checked in-
dependently. In particular, we give separate correctness proofs for two
key parts of driving – normalization and positive information propaga-
tion – in the context of a non-Turing-complete expression sub-language.
Though our supercompiler is currently limited, its formal correctness
proof can give guidance for verifying more realistic implementations.

1 Introduction

Supercompilation [21,18] typically combines a small set of local source trans-
formations with (function) unfolding/folding and generalization in an intricate
way. Some general methods have been developed for verifying its correctness
– both in the sense of semantics preservation [15] and concerning termination
on all inputs [16]. Nonetheless, in view of recent advances in tools for formal
computer-verified reasoning, it appears interesting to develop techniques for for-
mal proofs of supercompiler correctness. If one is to pursue such a task, there
are two options. The first is to follow as closely as possible the definition of a
working supercompiler and to develop a proof of its correctness that can be ver-
ified automatically by an existing proof checker. This approach has already been
shown to work on systems as complex as compilers for real-world programming
languages [12] and operating system kernels [10], so it should be feasible, but
probably a lot of work. Alternatively, we can start with simplifying the task as
much as possible, so that formal proofs become much easier. This approach is
useful even if one is not interested in computer-checked proofs, as it can shed
new light on the interaction of the various ingredients of supercompilation.

To simplify the definition of supercompilation, we combine two methods.
Firstly, we use a toy programming language operating on an equally simple
value domain. Then we take a step forward by isolating as much as possible the
different ingredients of supercompilation, with independent proofs of correctness
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for each one, which are then combined in a modular way in a proof of correctness
for the whole supercompiler. Traditionally supercompilation is presented as the
combination of several processes – driving, ”whistle”, folding, generalization (see
[18] for a good introduction of positive supercompilation). In the actual defini-
tion of the complete supercompiler algorithm this conceptual decomposition is
typically blurred, and it appears non-trivial to exploit it directly in verification.
We achieve a more significant separation of phases, with an individual proof of
correctness for each of them:

– Driving (minus unfolding) is defined in the context of a non-Turing-complete
language of simple expressions (whose denotational semantics is defined in
Sect. 2), and is decomposed into two separate transformations:
• Normalization (equivalent to simple deforestation [22] minus unfolding,

Sect. 2.1);
• Positive information propagation (Sect. 2.3). An interesting technical

detail here is, that we use a variable-free language and a simple form of
explicit substitutions [1] for propagating information (Sect. 2.2);

– We use a small imperative language, which embeds the expression sublan-
guage discussed above and whose programs contain a single while loop. We
define its semantics in a big-step operational style (Sect. 3). Unfolding and
folding are correspondingly replaced by a basic form of loop unrolling. The
proof of correctness is cleanly split in two – correctness of one-step unrolling
(Sect. 3.1), and correctness of repeated unrollings (Sect. 3.4);

– The treatment of the ”whistle” brings no novelties beside the fact that the
proof of termination is completely separated from the proof of (partial) cor-
rectness (Sect. 3.2). This is one of the few places where we ”cheat” a bit –
we take Kruskal’s tree theorem as an assumption, as its formal proof is a big
topic of its own;

– We ignore generalization for the time being, as it does not appear essential
for our current definition of loop unrolling.

While the resulting supercompiler is too limited to be practically useful, it
can still achieve interesting results on select small examples (Sect. 3.3). To give
a glimpse of the separation of concerns achieved, here is a small example of a
normalization (normConv) of a simple expression, contrasted with normalization
plus positive information propagation (norm):

Eval compute in (let e := (IfNil Hd (Nil # Nil) (IfNil Hd Nil Tl))

in (ntrm2trm (normConv e), ntrm2trm (norm e))).

=(IfNil Hd (Nil # Nil) (IfNil Hd Nil Tl), IfNil Hd (Nil # Nil) Tl)

Notice the removal of the redundant test in the second expression.

1.1 Notation

The text of this article is produced from a literate Coq script using the coq-
doc tool [19]. All data type and function definitions, as well as the statements
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of all lemmas/theorems, are given directly in Coq syntax. We use almost none
of the more advanced or specific features of this proof assistant, so while our
readers should be familiar with functional programming and first-order logic,
they do not need prior experience with Coq. Coq contains a total functional
programming sublanguage, similar in many respects to languages like Haskell
and OCaml (modulo totality requirements). It permits well-founded inductive1

data type definitions (keyword Inductive ...), non-recursive global definitions
(Definition), structurally recursive global (Fixpoint) and local (fix ) defini-
tions, pattern matching (match ... with | ... ⇒ ... | ... end), lambda functions
(fun ... ⇒ ...). Coq also embeds (a form of) intuitionistic logic2, with the usual
logical quantifiers and connectives (∀, ∃, →, False, True, ¬, ∧, ∨, ↔, =). Type
information is specified as (x : T ) for an object x having a type T. Computable
types usually have sort Set, while logical propositions live in sort Prop. There
is a computable type bool : Set with a number of operations on it, which should
not be confused with the non-executable logical propositions and connectives
living in Prop. We use other standard library types – natural numbers (nat with
constructors O and S, and standard arithmetic operations), and lists (list X
with constructors nil and ::, and standard list operations like length and ++
(append)).

We believe, that the formulation of definitions and lemma statements is more
valuable in understanding this work than the detailed proofs themselves. Proofs
can be quite lengthy and are usually expressed using a special tactic language –
which can be difficult to follow outside of Coq. The complete proofs can always
be checked inside the original Coq source. Therefore, we have omitted them here
and only give brief informal hints for some of the more complicated ones. Most
of the lengthier proofs are broken up into a series of lemmas, each one building
on the previous ones, and culminating in a final theorem with a typically trivial
proof. We do give the statements of all such lemmas, not only the main theorems.
Furthermore, proofs of individual lemmas usually proceed straightforwardly by
induction, and can be automated to a great extent using suitable heuristics for
automatic proof search [4].

2 Simple Expression Language

We start with an extremely simple domain of values - binary trees (or, equiva-
lently, Lisp-like S-expressions) with a single atom, VNil. As some of our built-in
functions will be partial, we also include a second dedicated atom, VBottom,
used to make all built-in functions total.

Inductive Val : Set :=
| VNil : Val | VCons: Val → Val → Val | VBottom: Val.

1 Coinductive definitions are also possible, but we do not use them here
2 Classical reasoning is also possible in Coq, but not required here
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The use of an untyped language is motivated by a hope for greater overall
simplicity, although a move to a typed setting would certainly bring some ben-
efits. Notice that the domain is lifted, as VCons is not strict w.r.t. VBottom:
VCons VBottom VBottom 6= VBottom.

The expressions of our simple language are built of primitives for construct-
ing (Nil, Cons) and deconstructing (Sel) binary trees, function composition and
identity (Cmp, Id), and conditional expressions testing for null values. It is con-
venient to have also a bottom-building primitive, Bottom, but there is no way
of testing for bottom:

Inductive Selector : Set := | HD | TL.

Inductive Trm: Set :=
| Nil : Trm | Cons: Trm → Trm → Trm | Sel : Selector → Trm
| Id : Trm | Cmp: Trm → Trm → Trm
| IfNil : Trm → Trm → Trm → Trm | Bottom.

We can use Coq’s Notation mechanism to add a small amount of syntax
sugar (note that lower levels correspond to higher precedence).

Infix ”$” := Cmp (at level 60, right associativity).
Notation Hd := (Sel HD). Notation Tl := (Sel TL).
Infix ”#” := Cons (at level 62, right associativity).

A few things are notable in the choice of language. It is variable-free, all
expressions denoting functions of type Val → Val. It is the presence of pair
constructor and selectors, as well as function composition, as primitives, that
gives this language the ability to encode substitutions and to do away with
variables. As the language is not Turing-complete, it is straightforward to give
its semantics as a total function, evalT :

Definition evalSel (sel : Selector) (v : Val) : Val :=
match v with

| VCons v1 v2 ⇒ match sel with | HD ⇒ v1 | TL ⇒ v2 end

| ⇒ VBottom
end.

Definition evalSels (sels: list Selector) (v : Val) : Val :=
fold left (fun v sel ⇒ evalSel sel v) sels v.

Fixpoint evalT (t : Trm) (v : Val) {struct t} : Val :=
match t with

| Nil ⇒ VNil
| Cons t1 t2 ⇒ VCons (evalT t1 v) (evalT t2 v)
| Sel sel ⇒ evalSel sel v
| Id ⇒ v
| Cmp t1 t2 ⇒ evalT t1 (evalT t2 v)
| IfNil t1 t2 t3 ⇒ match evalT t1 v with
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| VNil ⇒ evalT t2 v | VCons ⇒ evalT t3 v | VBottom ⇒ VBottom
end

| Bottom ⇒ VBottom
end.

2.1 Normalization of Simple Expressions

The first step in our series of transformations will be to perform some stan-
dard normalizing simplifications to expressions. As the resulting expressions will
always have a specific shape, we can define a special type for normal-form ex-
pressions:

Inductive NTrm: Set :=
| NNil : NTrm | NCons: NTrm → NTrm → NTrm
| NSelCmp: list Selector → NTrm
| NIfNil : list Selector → NTrm → NTrm → NTrm
| NBottom: NTrm.

The important difference is, that in normal forms function composition can
only be applied to pair selectors, and that tests in conditional expressions are
only of this special form of selector compositions. Notice that the selectors appear
in reverse order in lists, and such lists of selectors can be directly interpreted as
positions in the binary trees of values. Of course, normal forms can be injected
back into the set of full-blown expressions:

Definition sels2trm (sels: list Selector): Trm := fold left (fun t sel ⇒
match t with | Id ⇒ Sel sel | ⇒ Cmp (Sel sel) t end) sels Id.

Fixpoint ntrm2trm (nt : NTrm) {struct nt} :Trm :=
match nt with

| NNil ⇒ Nil
| NCons nt1 nt2 ⇒ Cons (ntrm2trm nt1 ) (ntrm2trm nt2 )
| NSelCmp sels ⇒ sels2trm sels
| NIfNil sels nt1 nt2 ⇒ IfNil (sels2trm sels) (ntrm2trm nt1 ) (ntrm2trm nt2 )
| NBottom ⇒ Bottom
end.

Using this injection, we can define a specialized evaluation function for nor-
mal terms by re-using the main evaluation function.

Definition evalNT (nt : NTrm) (v : Val) : Val := evalT (ntrm2trm nt) v.

Next we establish some basic properties involving evalSels, that will be useful
in subsequent proofs.

Lemma evalT sels2trm: ∀ sels: list Selector, ∀ v : Val,
evalT (sels2trm sels) v = evalSels sels v.

Lemma evalSelsVBottom: ∀ sels: list Selector, evalSels sels VBottom = VBottom.
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Lemma evalSelsAppend : ∀ sels1 sels2 : list Selector, ∀ v : Val,
evalSels (sels1 ++ sels2 ) v = evalSels sels2 (evalSels sels1 v).

The main normalization function, normConv, uses a number of auxiliary op-
erations on normal-form expressions, dealing mostly with special cases of func-
tion composition. We list along the way some lemmas establishing characteristic
properties of the functions defined. The simplest cases cover composition of a
selector or a list of selectors with an expression.

Fixpoint normSelNCmp (sel : Selector) (nt : NTrm) {struct nt}: NTrm :=
match nt with

| NNil ⇒ NBottom
| NCons nt1 nt2 ⇒ match sel with | HD ⇒ nt1 | TL ⇒ nt2 end

| NSelCmp sels ⇒ NSelCmp (sels ++ (sel ::nil))
| NIfNil sels nt1 nt2 ⇒ NIfNil sels

(normSelNCmp sel nt1 ) (normSelNCmp sel nt2 )
| NBottom ⇒ NBottom
end.

Lemma normSelNCmpPreservesEval : ∀ (sel : Selector) (nt : NTrm) (v : Val),
evalNT (normSelNCmp sel nt) v = evalSel sel (evalNT nt v).

Definition normSelsNCmp (sels: list Selector) (nt : NTrm) : NTrm :=
fold left (fun nt sel ⇒ normSelNCmp sel nt) sels nt.

Lemma normSelsNCmpPreservesEvalT : ∀ sels: list Selector, ∀ nt : NTrm,
∀ v : Val, evalT (ntrm2trm (normSelsNCmp sels nt)) v
= evalSels sels (evalT (ntrm2trm nt) v).

Lemma normSelsNCmpPreservesEval : ∀ sels: list Selector, ∀ nt : NTrm, ∀ v : Val,
evalNT (normSelsNCmp sels nt) v = evalSels sels (evalNT nt v).

Lemma normSelsNCmp NSelCmp: ∀ (sels1 sels2 : list Selector),
normSelsNCmp sels1 (NSelCmp sels2 ) = NSelCmp (sels2 ++ sels1 ).

We also consider composition of selectors to the right of a normal-form ex-
pression nt.

Fixpoint normNCmpSels (nt : NTrm) (sels: list Selector) {struct nt}
: NTrm := match nt with

| NNil ⇒ NNil
| NCons nt1 nt2 ⇒

NCons (normNCmpSels nt1 sels) (normNCmpSels nt2 sels)
| NSelCmp sels2 ⇒ NSelCmp (sels ++ sels2 )
| NIfNil sels2 nt1 nt2 ⇒ NIfNil (sels ++ sels2 )

(normNCmpSels nt1 sels) (normNCmpSels nt2 sels)
| NBottom ⇒ NBottom
end.
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Lemma normNCmpSelsPreservesEval : ∀ sels: list Selector, ∀ nt : NTrm, ∀ v : Val,
evalNT (normNCmpSels nt sels) v = evalNT nt (evalSels sels v).

Lemma normNCmpSels app: ∀ (sels1 sels2 : list Selector) (nt : NTrm),
normNCmpSels nt (sels1 ++ sels2 )
= normNCmpSels (normNCmpSels nt sels2 ) sels1.

Next, we deal with building conditional expressions in normal form. If the
normal form of the condition is a value-constructing primitive, we can statically
reduce the whole if-expression. The other interesting case is when the condition
is itself another if-expression – in this case we switch the order of the tests and
duplicate the original outer NIfNil inside the branches of the new outer NIfNil.

Fixpoint normNIf (nt1 nt2 nt3 : NTrm) {struct nt1} : NTrm :=
match nt1 with

| NNil ⇒ nt2
| NCons ⇒ nt3
| NSelCmp sels ⇒ NIfNil sels nt2 nt3
| NIfNil sels nt1 1 nt1 2 ⇒ NIfNil sels

(normNIf nt1 1 nt2 nt3 ) (normNIf nt1 2 nt2 nt3 )
| NBottom ⇒ NBottom
end.

Lemma normNIfPreservesEvalT : ∀ nt1 nt2 nt3 : NTrm, ∀ v : Val,
evalT (ntrm2trm (normNIf nt1 nt2 nt3 )) v
= match evalT (ntrm2trm nt1 ) v with

| VNil ⇒ evalT (ntrm2trm nt2 ) v
| VCons ⇒ evalT (ntrm2trm nt3 ) v
| VBottom ⇒ VBottom
end.

Lemma normNIfPreservesEval : ∀ nt1 nt2 nt3 : NTrm, ∀ v : Val,
evalNT (normNIf nt1 nt2 nt3 ) v = match evalNT nt1 v with

| VNil ⇒ evalNT nt2 v
| VCons ⇒ evalNT nt3 v
| VBottom ⇒ VBottom
end.

The sequence of operations on normal-form expressions culminates in a func-
tion normNCmp, which permits to form the composition of two normal-form
expressions without having function composition as primitive. The most inter-
esting cases here involve the composition of NIfNil and NSelCmp/NIfNil :

Definition normNCmp : NTrm → NTrm → NTrm :=
fix normNCmp nt1 (nt1 : NTrm): NTrm → NTrm :=
fix normNCmp nt2 (nt2 : NTrm): NTrm :=
match nt1 with

| NNil ⇒ NNil
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| NCons nt1 1 nt1 2 ⇒
NCons (normNCmp nt1 nt1 1 nt2 ) (normNCmp nt1 nt1 2 nt2 )

| NSelCmp sels ⇒ normSelsNCmp sels nt2
| NIfNil sels nt1 1 nt1 2 ⇒ match nt2 with

| NSelCmp sels2 ⇒ NIfNil (sels2 ++ sels)
(normNCmpSels nt1 1 sels2 ) (normNCmpSels nt1 2 sels2 )

| NIfNil sels2 nt2 1 nt2 2 ⇒ NIfNil sels2
(normNCmp nt2 nt2 1 ) (normNCmp nt2 nt2 2 )

| ⇒ normNIf (normSelsNCmp sels nt2 )
(normNCmp nt1 nt1 1 nt2 ) (normNCmp nt1 nt1 2 nt2 )

end

| NBottom ⇒ NBottom
end.

We can easily establish that the composition of 2 if-expressions can be re-
placed by pushing the first if-expression inside the branches of the second:

Lemma normNCmpIfIf : ∀ sels1 sels2 : list Selector,
∀ nt1 1 nt1 2 nt2 1 nt2 2 : NTrm, let nt1 := NIfNil sels1 nt1 1 nt1 2 in

normNCmp nt1 (NIfNil sels2 nt2 1 nt2 2 )
= NIfNil sels2 (normNCmp nt1 nt2 1 ) (normNCmp nt1 nt2 2 ).

We also establish that normNCmp satisfies the defining property of function
composition; this is the key lemma on which correctness of normalization relies:

Lemma normNCmpPreservesEval : ∀ nt1 nt2 : NTrm, ∀ v : Val,
evalNT (normNCmp nt1 nt2 ) v = evalNT nt1 (evalNT nt2 v).

The last lemma is a bit tricky to prove: as normNCmp is defined using
nested lexicographic recursion, we must use nested induction in the proof and
apply rewritings using the previously proved lemmas.

Finally, the stage is set for the conversion of arbitrary expressions into normal
form:

Fixpoint normConv (t : Trm) {struct t} :NTrm :=
match t with

| Nil ⇒ NNil
| Cons t1 t2 ⇒ NCons (normConv t1 ) (normConv t2 )
| Sel sel ⇒ NSelCmp (sel ::nil)
| Id ⇒ NSelCmp nil
| Cmp t1 t2 ⇒ normNCmp (normConv t1 ) (normConv t2 )
| IfNil t1 t2 t3 ⇒ normNIf (normConv t1 ) (normConv t2 ) (normConv t3 )
| Bottom ⇒ NBottom
end.

With all this in place, the main theorem establishing the correctness of nor-
malization can be proved by straightforward induction on the expression struc-
ture:
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Theorem normConvPreservesEval : ∀ (t : Trm) (v : Val),
evalNT (normConv t) v = evalT t v.

We can see on an example, that normConv not only brings expressions into
normal form, but also achieves some optimizations like deforestation:

Eval compute in (ntrm2trm (normConv ((IfNil Hd ((Tl $ Tl) # (Hd $ Tl))
Tl) $ (Nil # Id)))).

= Tl # Hd : Trm

As we have seen in the introduction, however, normalization by itself does
not eliminate redundant tests.

2.2 Emulating Substitutions

Before we tackle positive information propagation, we need to make a small
detour and show how substitutions can be emulated inside our language, giving
a simple form of explicit substitutions [1]. Let’s first note that we can replace
a set of values, denoted by variables, with a list structure built from pairs (e.g.
[8]). Variables in this case can be replaced by positions in the list structure,
represented by lists of pair selectors. For example, the expression IfNil x1 x2 x3,
has three free variables. We can pack their values into a list – x1 # x2 # x3
– and replace their references inside the expression with the corresponding list
positions: IfNil Hd (Hd $ Tl) (Tl $ Tl), as the following clearly holds: (IfNil
Hd (Hd $ Tl) (Tl $ Tl)) $ (x1 # x2 # x3 ) = IfNil x1 x2 x3. We can define
an operation, replaceAt, which for a given tree position (represented with a list
of selectors pos) and two normal-form expressions, generates a new expression,
which has the result of the second expression pushed at position pos in the result
of the first expression.

Fixpoint replaceAt (pos: list Selector) (t trep: NTrm) {struct pos}: NTrm :=
match pos with

| nil ⇒ trep
| sel ::sels ⇒ match sel with
| HD ⇒ NCons (replaceAt sels (normSelNCmp HD t) trep)

(normSelNCmp TL t)
| TL ⇒ NCons (normSelNCmp HD t)

(replaceAt sels (normSelNCmp TL t) trep)
end

end.

The action of this function is best illustrated with a couple of examples. If
we have 2 values packed in a pair as input – say x1 # x2 – we can fix the value
of x1 to Nil # Nil in the following way:

Eval compute in (ntrm2trm (replaceAt (HD ::nil) (normConv Id) (normConv
(Nil # Nil)))).
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= (Nil # Nil) # Tl : Trm

We can substitute not only constant values but also arbitrary expressions
with replaceAt and normNCmp. If we consider again the expression IfNil x1 x2
x3 with the given encoding of variables (x1 # x2 # x3 ), we can substitute Tl $
Hd $ Tl # Hd $ Hd $ Tl for x2 thusly:

Eval compute in (let nt1 := normConv (IfNil Hd (Hd $ Tl) (Tl $ Tl)) in
let nt2 := normConv (Tl $ Hd $ Tl # Hd $ Hd $ Tl) in
ntrm2trm (normNCmp nt1 (replaceAt (TL::HD::nil) (normConv Id) nt2 ))).

= IfNil Hd (Tl $ Hd $ Tl # Hd $ Hd $ Tl) (Tl $ Tl) : Trm

We now establish some properties of replaceAt that will prove useful later.

Lemma replaceAt id : ∀ sels: list Selector, ∀ t trep: NTrm,
normSelsNCmp sels (replaceAt sels t trep) = trep.

Lemma replaceAt app: ∀ (sels1 sels2 : list Selector) (nt ntrepl : NTrm),
replaceAt (sels1 ++ sels2 ) nt ntrepl
= replaceAt sels1 nt (replaceAt sels2 (normSelsNCmp sels1 nt) ntrepl).

For the next property, we need to compute the common prefix and the dif-
ferent suffixes of 2 lists. We shall need also to compute equivalence of selectors.

Definition Sel eq dec (sel1 sel2 : Selector) : {sel1 = sel2} + {sel1 6= sel2}.
decide equality.

Defined.

This is just a nice trick to let Coq deduce the equality predicate for us. The
type {sel1 = sel2} + {sel1 6= sel2} is a sum type than not only gives the outcome
of the test, but also contains a proof of the corresponding equality/inequality.
For simplicity, we can cast this result to a simple bool, using the fact that Coq
if expressions apply generically to any type with 2 constructors:

Definition eqSel sel1 sel2 := if Sel eq dec sel1 sel2 then true else false.

Lemma eqSel reflx : ∀ sel, eqSel sel sel = true.

Fixpoint commonPrefix (X : Set) (eqX : X → X → bool) (l1 l2 : list X )
{struct l1} : (list X ) × (list X ) × (list X ) := match l1, l2 with

| nil, ⇒ (nil, nil, l2 )
| , nil ⇒ (nil, l1, nil)
| x ::xs, y ::ys ⇒ if eqX x y then

let cp := commonPrefix X eqX xs ys in let pr := fst (fst cp) in
let l1a := snd (fst cp) in let l2a := snd cp in (x ::pr, l1a, l2a)

else (nil, l1, l2 )
end.
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Lemma commonPrefix X XappY : ∀ X : Set, ∀ eqX : X → X → bool,
(∀ x : X, eqX x x = true) → ∀ xs ys: list X,
commonPrefix X eqX xs (xs ++ ys) = (xs, nil, ys).

Lemma normSelsNCmp ReplaceAt : ∀ (sels1 sels2 : list Selector),
∀ (nt ntrepl : NTrm), normSelsNCmp sels1 (replaceAt sels2 nt ntrepl) =
let cp := commonPrefix eqSel sels1 sels2 in let csels := fst (fst cp) in
let usels1 := snd (fst cp) in let usels2 := snd cp in

normSelsNCmp usels1 (replaceAt usels2 (normSelsNCmp csels nt) ntrepl).

Lemma replaceAt NSelCmp: ∀ (sels1 sels2 : list Selector) (nt : NTrm),
replaceAt sels1 (NSelCmp sels2 ) nt
= normSelsNCmp sels2 (replaceAt (sels2 ++ sels1 ) (NSelCmp nil) nt).

2.3 Positive Information Propagation

We can use object-level substitution, as implemented by replaceAt and norm-
NCmp, to propagate information about the test result inside the branches of a
conditional expressions. This transformation is one of the key differences that dis-
tinguish supercompilation from weaker optimizations like classical partial eval-
uation and deforestation [5,18]. The definition is greatly simplified by the fact
that normal-form tests can only take the form of selector compositions.

Definition setNilAt (sels: list Selector): NTrm :=
replaceAt sels (NSelCmp nil) NNil.

Definition setConsAt (sels: list Selector) : NTrm :=
replaceAt sels (NSelCmp nil)

(NCons (NSelCmp (sels ++ HD ::nil)) (NSelCmp (sels ++ TL::nil))).

Once we have an expression encoding the substitution of the test result,
what remains is to compose it with the corresponding if-branch, as in our case
substitution composition is replaced by simple function composition.

Fixpoint propagateIfCond (nt : NTrm) {struct nt} : NTrm :=
match nt with

| NCons nt1 nt2 ⇒ NCons (propagateIfCond nt1 ) (propagateIfCond nt2 )
| NIfNil sels nt1 nt2 ⇒
let nt1a := propagateIfCond nt1 in let nt2a := propagateIfCond nt2 in

let nt1b := normNCmp nt1a (setNilAt sels) in
let nt2b := normNCmp nt2a (setConsAt sels) in NIfNil sels nt1b nt2b
| ⇒ nt
end.

Establishing the correctness of propagateIfCond is once again decomposed
into a sequence of lemmas.

Lemma setNilAtPreservesEvalAux : ∀ (sels1 sels2 : list Selector),
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replaceAt sels1 (NSelCmp sels2 ) NNil
= normNCmpSels (replaceAt sels1 (NSelCmp nil) NNil) sels2.

Lemma setConsAtPreservesEvalAux : ∀ (sels1 sels2 : list Selector),
replaceAt sels1 (NSelCmp sels2 ) (NCons (NSelCmp

(sels2 ++sels1++HD::nil)) (NSelCmp (sels2 ++sels1++TL::nil)))
= normNCmpSels (replaceAt sels1 (NSelCmp nil) (NCons

(NSelCmp (sels1 ++HD::nil)) (NSelCmp (sels1 ++TL::nil)))) sels2.

Lemma setNilAtPreservesEvalAux2 : ∀ (v : Val), ∀ (sels1 sels2 : list Selector),
evalSels sels1 (evalNT (setNilAt (sels1 ++sels2)) v)
= evalNT (setNilAt sels2 ) (evalSels sels1 v).

Lemma setConsAtPreservesEvalAux2 : ∀ (v : Val), ∀ (sels1 sels2 : list Selector),
evalSels sels1 (evalNT (setConsAt (sels1 ++sels2)) v)
= evalNT (setConsAt sels2 ) (evalSels sels1 v).

Lemma setNilAtPreservesEval : ∀ sels: list Selector, ∀ v : Val,
evalSels sels v = VNil → evalNT (setNilAt sels) v = v.

Lemma setConsAtPreservesEval : ∀ sels: list Selector, ∀ v v1 v2 : Val,
evalSels sels v = VCons v1 v2 → evalNT (setConsAt sels) v = v.

Lemma condPropagatorsPreserveEval : ∀ (sels: list Selector) (nt1 nt2 : NTrm),
∀ (v : Val), evalNT (NIfNil sels (normNCmp nt1 (setNilAt sels))

(normNCmp nt2 (setConsAt sels))) v = evalNT (NIfNil sels nt1 nt2 ) v.

The proofs of these lemmas involve some tricky rewrites, using the established
properties of replaceAt. Details can be found in the actual Coq sources. The
main theorem can now be proved easily by induction, using the last lemma
condPropagatorsPreserveEval.

Theorem propagateIfCondPreservesEval : ∀ nt : NTrm, ∀ v : Val,
evalNT (propagateIfCond nt) v = evalNT nt v.

We can combine the first two stages – normalization and positive information
propagation – into a single function, and trivially establish its correctness.

Definition norm (t : Trm) := propagateIfCond (normConv t).

Theorem normPreservesEval : ∀ t v, evalNT (norm t) v = evalT t v.

Recalling the example from the introduction, we can see that norm also
eliminates redundant tests, besides other reductions:

Eval compute in (ntrm2trm (norm (IfNil Hd (Nil # Nil) (IfNil Hd Nil Tl)))).

= IfNil Hd (Nil # Nil) Tl : Trm
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3 A Turing-complete Imperative Language

While our simple expression language has helped us to successfully study some
key aspects of supercompilation, it is obvious that we cannot write many inter-
esting programs in it. Not only it is far from being Turing-complete, but it even
lacks full-blown primitive recursion. However, we can build upon this language to
obtain a larger, Turing-complete one. For example, we can embed the language
of simple expressions inside a small imperative language with assignments and
while-loops (called here SWhile):

Inductive SWhileStmt : Set :=
| Assign: Trm → SWhileStmt
| Seq : SWhileStmt → SWhileStmt → SWhileStmt
| While: Trm → SWhileStmt → SWhileStmt.

As a further simplification, we assume that the language has a single vari-
able, similar to other research languages like I and LOOP [8,7]. This variable
is implicitly used in assignments and while tests. As this language is Turing-
complete, we cannot specify its evaluator directly as a total Coq function, like
we did for the language of simple expressions. We can specify its semantics as
a logical relation, which is encoded in Coq as a (dependent) inductive family
living in Prop:

Inductive SWhileEvalRel : Val → SWhileStmt → Val → Prop :=
| SWhileEvalAssign: ∀ e v, SWhileEvalRel v (Assign e) (evalT e v)
| SWhileEvalSeq : ∀ st1 st2 v1 v2 v3,

SWhileEvalRel v1 st1 v2 → SWhileEvalRel v2 st2 v3 →
SWhileEvalRel v1 (Seq st1 st2 ) v3

| SWhileEvalWhileNil : ∀ cond st v,
evalT cond v = VNil → SWhileEvalRel v (While cond st) v

| SWhileEvalWhileBottom: ∀ cond st v,
evalT cond v = VBottom → SWhileEvalRel v (While cond st) VBottom

| SWhileEvalWhileCons: ∀ cond st v1 v2 v3 vh vt,
evalT cond v1 = VCons vh vt → SWhileEvalRel v1 st v2 →
SWhileEvalRel v2 (While cond st) v3 →
SWhileEvalRel v1 (While cond st) v3.

We can further simplify our task, by considering only programs containing
a single while loop. This can be seen as an analog of Kleene’s normal form
(KNF) from recursion theory, and there are well-known proofs (not repeated
here) that limiting ourselves to a single while loop implies no loss of generality
[6]. The ”Kleene normal form” analog for SWhile programs can be represented
as a record of 4 simple expressions:

Record KNFProg : Set := MkKNFProg {
initExp: Trm; condExp: Trm; bodyExp: Trm; finalExp: Trm }.
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The meaning is obvious by the injection into the full syntax of SWhile pro-
grams:

Definition KNFtoProg knf :=
Seq (Assign (initExp knf ))
(Seq (While (condExp knf ) (Assign (bodyExp knf )))

(Assign (finalExp knf ))).

We can introduce a bit of syntactic sugar for SWhile constructs (at the
expense of a conflict with the Record syntax).

Infix ”;” := Seq (at level 65, right associativity).
Notation ”’VAR’ ’←’ e” := (Assign e) (at level 64).
Notation ”’WHILE’ cond ’DO’ body ’DONE’” := (While cond body) (at level
0).

As a simple example, here is a program that reverses its input (assuming the
usual Lisp encoding of lists as binary trees).

Definition revList knf := MkKNFProg
(Id # Nil) Hd (Tl $ Hd # Hd $ Hd # Tl) Tl.

Eval compute in (KNFtoProg revList knf ).

= VAR <- Id # Nil;

WHILE Hd DO VAR <- Tl $ Hd # Hd $ Hd # Tl DONE;

VAR <- Tl : SWhileStmt

We see here one important drawback of the simplifications we introduced:
our language is very difficult to program in, and very unreadable. To make the
meaning of the code clearer, we can rewrite it by hand to a version of SWhile
with many variables; in our case 2 suffice – input and output :

output <- Nil;

WHILE input DO

(input # output) <- (Tl $ input) # (Hd $ input # output) DONE;

While the abstract syntax of SWhile permits arbitrary expressions as while-
loop conditions, many optimizing transformations that follow are valid only if
the condition of the loop is strict, according to the following definition:

Definition strictTrm (t : Trm) := evalT t VBottom = VBottom.

We can easily see that strictness for our expression language amounts to a
simple syntactic check on the normal form of the expression:

Lemma strictTrm SyntaxCriterion: ∀ (t : Trm), strictTrm t ↔
(match normConv t with | NNil | NCons ⇒ false | ⇒ true end) = true.
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So it is obviously reasonable to consider only programs with strict loop con-
ditions as otherwise the loop degenerates to either an infinite or an empty one.

While the relational specification of SWhile semantics is elegant, it is not
executable (at least not inside Coq). We can build an approximation to an
evaluation function in Coq itself, using a standard trick for modeling partial
functions – we add an extra parameter limiting the recursion depth, and the
definition of the evaluation function can be done by structural recursion on that
new parameter. We do so only for the KNF special case.

Fixpoint evalKNFCore (d : nat) (cond e: Trm) (v : Val) {struct d}
: option Val := match d with

| O ⇒ None
| S d’ ⇒ match evalT cond v with

| VNil ⇒ Some v
| VBottom ⇒ Some VBottom
| VCons ⇒ evalKNFCore d’ cond e (evalT e v)
end

end.

Definition evalKNF (d : nat) (knf : KNFProg) (v : Val) : option Val :=
match evalKNFCore d (condExp knf ) (bodyExp knf )
(evalT (initExp knf ) v) with
| None ⇒ None
| Some v ⇒ Some (evalT (finalExp knf ) v)
end.

We can now execute the example program above on some input:

Definition listToVal vs := fold right VCons VNil vs.
Eval vm compute in (evalKNF 3 revList knf

(listToVal (VNil ::(VCons VNil VNil)::nil))).

= Some (VCons (VCons VNil VNil) (VCons VNil VNil)) : option Val

In order to verify that the executable interpreter is correct with respect to
the relational semantics given above, we first establish, that the evaluation of the
loop by evalKNFCore respects the semantics, and then we prove the correctness
of the main evaluation function – evalKNF

Lemma evalKNFCore SWhileEvalRel : ∀ cond e v1 v2,
SWhileEvalRel v1 (While cond (Assign e)) v2 ↔
∃ d : nat, evalKNFCore d cond e v1 = Some v2.

Theorem evalKNF SWhileEvalRel : ∀ knf v1 v2,
SWhileEvalRel v1 (KNFtoProg knf ) v2 ↔
∃ d : nat, evalKNF d knf v1 = Some v2.
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3.1 Loop Unrolling

The principal additional optimization that we can perform on loop programs –
on the top of the already existing optimizations for the expression sub-language
– is loop unrolling. We can study different forms of while-loop unrolling; here we
shall limit ourselves to one simple form of unrolling – trying to execute the body
of the loop once before entering the loop itself, provided the condition of the loop
holds. Of course, we cannot expect spectacular optimizations from this form of
unrolling; in the very least, it leaves the loop itself unmodified. It is sufficient,
however, to demonstrate the power of positive information propagation in some
simple cases. Later in the paper we discuss possibilities for more powerful forms
of loop unrolling.

Definition unrollToInit knf := let nrm t := ntrm2trm (norm t) in
let newInit := nrm ((IfNil (condExp knf ) Id (bodyExp knf )) $ (initExp knf ))
in MkKNFProg newInit (condExp knf ) (bodyExp knf ) (finalExp knf ).

We can verify that unrolling the loop once respects the semantics. It turns
easier to use evalKNFCore and evalKNF as semantics specifications; it is OK as
we have already verified that they are faithful to the original specification by a
logical relation.

Lemma normPreservesEval’ : ∀ t v, evalT (ntrm2trm (norm t)) v = evalT t v.

Lemma evalKNFCore Bottom: ∀ d cond e v, strictTrm cond →
evalKNFCore d cond e VBottom = Some v → v = VBottom.

Lemma evalKNFCore unrollToInit fw : ∀ d knf v1 v2, strictTrm (condExp knf )
→ evalKNFCore d (condExp knf ) (bodyExp knf ) v1 = Some v2 →
∃ d2 : nat, evalKNFCore d2 (condExp knf ) (bodyExp knf ) (evalT

(IfNil (condExp knf ) Id (bodyExp knf )) v1 ) = Some v2.

Lemma evalKNF unrollToInit fw : ∀ d knf v1 v2, strictTrm (condExp knf )
→ evalKNF d knf v1 = Some v2 →
∃ d2 : nat, evalKNF d2 (unrollToInit knf ) v1 = Some v2.

Lemma evalKNFCore unrollToInit bw : ∀ d knf v1 v2, strictTrm (condExp knf )
→ evalKNFCore d (condExp knf ) (bodyExp knf ) (evalT

(IfNil (condExp knf ) Id (bodyExp knf )) v1 ) = Some v2 →
∃ d2 : nat, evalKNFCore d2 (condExp knf ) (bodyExp knf ) v1 = Some v2.

Lemma evalKNF unrollToInit bw : ∀ d knf v1 v2, strictTrm (condExp knf )
→ evalKNF d (unrollToInit knf ) v1 = Some v2 →
∃ d2 : nat, evalKNF d2 knf v1 = Some v2.

Theorem evalKNF unrollToInit : ∀ knf v1 v2, strictTrm (condExp knf ) →
((∃ d : nat, evalKNF d knf v1 = Some v2 ) ↔
(∃ d2 : nat, evalKNF d2 (unrollToInit knf ) v1 = Some v2 )).
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To deal with repeated unrollings and to lay the background for termination
verification of the whole supercompiler, we need streams (infinite sequences). A
simple function-based definition suffices for our purposes.

Definition Stream A := nat → A .

We define a couple of basic operations on streams – the well-known map and
unfold from the functional programming repertoire.

Definition streamMap A B (f : A → B) (s: Stream A) : Stream B :=
fun n ⇒ f (s n).

Definition streamUnfold X (seed : X ) (f : X → X ) : Stream X :=
fix streamUnfold’ (n: nat) {struct n} : X := match n with

| O ⇒ seed | S n’ ⇒ f (streamUnfold’ n’ ) end.

3.2 Homeomorphic Embedding for Ensuring Termination

The so-called ”whistle” of our supercompiler uses the now-standard approach
of relying on homeomorphic embedding and the Kruskal’s tree theorem [17] to
ensure termination of the process. To formulate this theorem in its general form,
we introduce a type of arbitrary first-order terms. The Coq Section mechanism
allows to specify only once parameters common for a whole set of definitions
– in our case the types for term variables and function symbols, as well as
the fact that function symbols have decidable equality. (Variables of first-order
terms typically also have decidable equality, but it is not needed in the current
development.)

Section FOTerms.

Variable V : Set. Variable F : Set.
Variable F eq dec: ∀ f g : F, {f = g} + {f 6= g}.

We adopt a slightly non-standard definition of first-order terms, which is
however easier to work with in Coq:

Inductive FOTerm : Set :=
| FOVar : V → FOTerm
| FOFun0 : option F → FOTerm
| FOFun2 : option F → FOTerm → FOTerm → FOTerm.

Definition optionF eq dec (f1 f2 : option F ): {f1 = f2} + {f1 6= f2}.
decide equality.

Defined.

Even with this definition of first-order terms, defining an executable version
of homeomorphic embedding in Coq is a little tricky – we need two nested
structural recursions, like in the case of normNCmp.

Definition homemb (t1 t2 : FOTerm) : bool :=
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(fix homemb1 (t1 : FOTerm): FOTerm → bool :=
(fix homemb2 (t2 : FOTerm): bool :=
match t1 with

| FOVar ⇒ match t2 with | FOVar ⇒ true | ⇒ false end

| FOFun0 f1 ⇒ match t2 with

| FOFun0 f2 ⇒ if optionF eq dec f1 f2 then true else false
| FOFun2 t21 t22 ⇒ orb (homemb2 t21 ) (homemb2 t22 )
| ⇒ false
end

| FOFun2 f1 t11 t12 ⇒ match t2 with

| FOFun2 f2 t21 t22 ⇒ orb (if optionF eq dec f1 f2
then andb (homemb1 t11 t21 ) (homemb1 t12 t22 )
else false) (orb (homemb2 t21 ) (homemb2 t22 ))

| ⇒ false
end

end

)) t1 t2.

We can now give a formulation of Kruskal’s theorem. It is beyond the scope
of the current work to give a formal proof of this result, so we just take it as an
assumption.

Theorem Kruskal : ∀ s: Stream FOTerm,
∃ i : nat, ∃ j : nat, i < j ∧ homemb (s i) (s j ) = true.

Admitted.

End FOTerms.

We mark some arguments as implicit so that they are inferred by the Coq
typechecker.

Implicit Arguments FOVar [V F ]. Implicit Arguments FOFun0 [V F ].
Implicit Arguments FOFun2 [V F ]. Implicit Arguments homemb [V F ].

To use Kruskal’s theorem for online termination, we need a few additional
ingredients. Firstly, a function that actually computes (the index of) the first
of the two terms in a sequence, that are related by homeomorphic embedding.
For simplicity, we limit the search to a finite initial fragment of the sequence
and prove separately that there is always such initial fragment that will produce
results.

Definition isNthEmbeddedBelow V F fn eq dec (n m: nat)
(s: Stream (FOTerm V F )) : bool :=
existsb (fun i ⇒ homemb fn eq dec (s n) (s i)) (seq (S n) (m - n)).

Implicit Arguments isNthEmbeddedBelow [V F ].

Definition firstEmbedded V F fn eq dec (n: nat) (s: Stream (FOTerm V F ))
: option nat :=
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find (fun i ⇒ isNthEmbeddedBelow fn eq dec i n s) (seq 0 n).
Implicit Arguments firstEmbedded [V F ].

We use list functions from the standard library, like existsb, find, seq, with
hopefully obvious meanings. Some of their useful properties are missing from the
library, and we have to prove them first:

Lemma find Some: ∀ X (f : X → bool) x xs,
In x xs → f x = true → ∃ y, find f xs = Some y.

Lemma In seq : ∀ n m l, In n (seq m l) ↔ m ≤ n < m + l.

With these properties in addition to Kruskal’s theorem, we easily establish
that firstEmbedded is total.

Theorem firstEmbedded total : ∀ V F F eq dec (s: Stream (FOTerm V F )),
∃ n, ∃ m, firstEmbedded F eq dec n s = Some m.

Another helper function we need is an injection from simple expressions into
first-order terms. We first define an enumeration of the constructors of expres-
sions, together with their decidable equality predicate. Then the definition of
the injection is straightforward.

Inductive TrmCons: Set := | TCNil | TCCons | TCSelHd
| TCSelTl | TCId | TCCmp | TCIfNil | TCBottom.

Definition TrmCons eq dec (t1 t2 : TrmCons) : {t1 = t2} + {t1 6= t2}.
decide equality.

Defined.

Fixpoint TrmToFOTerm (e: Trm) : FOTerm Empty set TrmCons :=
match e with

| Nil ⇒ FOFun0 (Some TCNil)
| Cons e1 e2 ⇒ FOFun2 (Some TCCons)

(TrmToFOTerm e1 ) (TrmToFOTerm e2 )
| Sel sel ⇒ if sel then FOFun0 (Some TCSelHd)

else FOFun0 (Some TCSelTl)
| Id ⇒ FOFun0 (Some TCId)
| Cmp e1 e2 ⇒ FOFun2 (Some TCCmp)

(TrmToFOTerm e1 ) (TrmToFOTerm e2 )
| IfNil e1 e2 e3 ⇒ FOFun2 (Some TCIfNil) (TrmToFOTerm e1 )

(FOFun2 (Some TCCons) (TrmToFOTerm e2 ) (TrmToFOTerm e3 ))
| Bottom ⇒ FOFun0 (Some TCBottom)
end.

3.3 Simple Supercompiler using Loop Unrolling

Now we can assemble all previously defined components into a finished basic
supercompiler. It first builds a stream of iterated unrollings of the program in
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KNF. Then it looks for pairs of initializer expressions related by homeomorphic
embedding in an initial fragment of the stream (the length of this fragment
being specified by an input parameter – n). We use only initializer expressions
when checking for termination, because they are the only KNF part changed by
the simple loop unrolling used here. To aid the experimentations on practical
examples, there is also an input option, alwaysSome, which can be used to force
a result even if no homeomorphic embedding is found in the specified initial
stream segment.

Definition sscpCore (alwaysSome: bool) unroll knf2trm n (knf : KNFProg) :=
let knfs := streamUnfold knf unroll in
let ts := streamMap (fun knf ⇒ TrmToFOTerm (knf2trm knf )) knfs in

match firstEmbedded TrmCons eq dec n ts with

| None ⇒ if alwaysSome then Some (knfs n) else None
| Some m ⇒ Some (knfs m)
end.

Definition sscp (alwaysSome: bool) n knf :=
sscpCore alwaysSome unrollToInit initExp n knf.

Alternatively, we define a cut-down version, which uses normConv instead
of norm during loop unrolling. In essence it is a simple deforestation analog of
the simple supercompiler above:

Definition unrollToInit’ knf :=
let nrm t := ntrm2trm (normConv t) in
let newInit := nrm ((IfNil (condExp knf ) Id (bodyExp knf )) $ (initExp knf ))
in MkKNFProg newInit (condExp knf ) (bodyExp knf ) (finalExp knf ).

Definition sscp’ (alwaysSome: bool) n knf :=
sscpCore alwaysSome unrollToInit’ initExp n knf.

Now we can see both methods at work, demonstrating the usefulness of even
this limited form of supercompilation. Consider again the usual Lisp-like encod-
ing of booleans and lists in the domain of binary trees. The task of checking if
an input list of booleans contains at least one false value can be performed by
the following program:

Definition listHasWFalse knf :=
let WFalse := Nil in let WTrue := Nil # Nil in MkKNFProg
(Id # WFalse) Hd (IfNil (Hd $ Hd) (Nil # WTrue) ((Tl $ Hd) # Tl)) Tl.

Eval compute in (KNFtoProg listHasWFalse knf ).

= VAR <- Id # Nil;

WHILE Hd DO

VAR <- IfNil (Hd $ Hd) (Nil # Nil # Nil) (Tl $ Hd # Tl)

DONE;

VAR <- Tl : SWhileStmt
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A few explanations are in order. We extend the computation state with a
flag to hold the final result – at position Tl – while keeping the original input
list at position Hd. Then we loop while the list is not empty, and test its head.
If it is VNil, we make the list empty to force an exit of the loop, and set the
result to true, otherwise we remove the list head and continue.

Next, we introduce a specialized version of this program, which, if the input
list is not empty, adds a negated copy of the head of the list. The idea is clearly
that this specialized version should return true on all non-empty lists, and false
only on the empty list.

Definition modifyKNFinput knf modifierExp := MkKNFProg
((initExp knf ) $ modifierExp) (condExp knf ) (bodyExp knf ) (finalExp knf ).

Definition listHasWFalse knf negdupHd :=
let WFalse := Nil in let WTrue := Nil # Nil in
let negate x := IfNil x WTrue WFalse in

modifyKNFinput listHasWFalse knf (IfNil Id Id (negate Hd # Id)).

Eval vm compute in (match sscp false 3 listHasWFalse knf negdupHd with

| Some knf ⇒ Some (KNFtoProg knf ) | None ⇒ None end).

= Some (VAR <- IfNil Id (Nil # Nil)

(IfNil Hd (Nil # Nil # Nil) (Nil # Nil # Nil));

WHILE Hd

DO VAR <- IfNil (Hd $ Hd)

(Nil # Nil # Nil) (Tl $ Hd # Tl)

DONE; VAR <- Tl) : option SWhileStmt

While the resulting program may not look simplified at first, if we remove by
hand the second if-expression with equal branches, we can see that the loop will
never be entered. The final correct result will be computed directly by the ini-
tializer expression. The combination of deforestation, positive information prop-
agation and simple loop unrolling has resulted in an almost optimal specialized
program in this case.

= Some (VAR <- IfNil Id (Nil # Nil) (Nil # Nil # Nil);

WHILE Hd

DO VAR <- IfNil (Hd $ Hd)

(Nil # Nil # Nil) (Tl $ Hd # Tl)

DONE; VAR <- Tl) : option SWhileStmt

In contrast, if we remove just positive information propagation from the mix,
the end result is much less satisfactory:

Eval vm compute in (match sscp’ false 2 listHasWFalse knf negdupHd with

| Some knf ⇒ Some (KNFtoProg knf ) | None ⇒ None end).

= Some (VAR <- IfNil Id
(IfNil Id (IfNil Id Id (IfNil Hd (Nil # Nil) Nil # Id) # Nil)
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(IfNil Id (IfNil Hd (Nil # Nil # Nil) (IfNil Id Tl Id # Nil))
(IfNil Hd (IfNil Id Tl Id # Nil) (Nil # Nil # Nil))))

(IfNil Id (IfNil Hd (Nil # Nil # Nil) (IfNil Id Tl Id # Nil))
(IfNil Hd (IfNil Id Tl Id # Nil) (Nil # Nil # Nil)));

WHILE Hd
DO VAR <- IfNil (Hd $ Hd) (Nil # Nil # Nil) (Tl $ Hd # Tl) DONE;
VAR <- Tl) : option SWhileStmt

3.4 Proof of Correctness of the Full Supercompiler

We consider two aspects of supercompiler correctness - totality and preservation
of semantics. Totality of the supercompiler function is a direct consequence of
totality of firstEmbedded (Theorem firstEmbedded total).

Lemma sscpCore total : ∀ b unroll knf2trm knf, ∃ n, ∃ knf1,
sscpCore b unroll knf2trm n knf = Some knf1.

Theorem sscp total : ∀ b knf, ∃ n, ∃ knf1, sscp b n knf = Some knf1.

Preservation of semantics, on the other hand, is established through a se-
quence of lemmas, essentially relying only on correctness of one-step loop un-
rolling (evalKNF unrollToInit). We can say that we have achieved one of the
main goals of this study - maximum modularity in proving different aspects of
supercompiler correctness.

Lemma condExp unrollToInitStream: ∀ knf n,
condExp (streamUnfold knf unrollToInit n) = condExp knf.

Lemma unrollToInitStream evalKNF fw : ∀ knf v1 v2 n d1,
strictTrm (condExp knf ) → evalKNF d1 knf v1 = Some v2 →
∃ d2, evalKNF d2 (streamUnfold knf unrollToInit n) v1 = Some v2.

Lemma unrollToInitStream evalKNF bw : ∀ knf v1 v2 n d1,
strictTrm (condExp knf ) → evalKNF d1 (streamUnfold knf unrollToInit n)
v1 = Some v2 → ∃ d2, evalKNF d2 knf v1 = Some v2.

Lemma sscpCore correct fw : ∀ b knf knf1 n d1 v1 v2, strictTrm (condExp knf )
→ sscpCore b unrollToInit initExp n knf = Some knf1 →
evalKNF d1 knf v1 = Some v2 → ∃ d2, evalKNF d2 knf1 v1 = Some v2.

Lemma sscpCore correct bw : ∀ b knf knf1 n d1 v1 v2, strictTrm (condExp knf )
→ sscpCore b unrollToInit initExp n knf = Some knf1 →
evalKNF d1 knf1 v1 = Some v2 → ∃ d2, evalKNF d2 knf v1 = Some v2.

Lemma sscpCore correct : ∀ b knf knf1 n v1 v2, strictTrm (condExp knf )
→ sscpCore b unrollToInit initExp n knf = Some knf1 →
((∃ d1, evalKNF d1 knf v1 = Some v2 ) ↔
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(∃ d2, evalKNF d2 knf1 v1 = Some v2 )).

Theorem sscp correct : ∀ b knf knf1 n v1 v2,
strictTrm (condExp knf ) → sscp b n knf = Some knf1 →
((∃ d1, evalKNF d1 knf v1 = Some v2 ) ↔
(∃ d2, evalKNF d2 knf1 v1 = Some v2 )).

4 Related Work

Since Turchin’s ground-breaking work on supercompilation of Refal has gained
popularity [21], a number of supercompilers have appeared for different lan-
guages ([5,17,18,3,13], to mention just a few). The supercompiler described in
this work is most closely related to the formulation of positive supercompilation
by Sørensen at al [18]. In contrast to other treatments of supercompilation, which
typically use either substitutions or environments on the meta-level in order to
propagate information in conditional branches, we use a form of object-level ex-
plicit substitutions. Explicit substitutions (introduced by Abadi et al [1]) are by
no means a new technique, and have been used, with varying details, in many
other contexts. In the context of supercompilation, they were previously applied
by the author in his PhD thesis [11], but not with the aim to simplify formal
proofs of correctness.

Studies have been published on general frameworks for proving semantics
preservation and termination of supercompilers and similar program transform-
ers - such as [15,16]. To the best of our knowledge, there has been no previous
work on formally verifying the correctness of a supercompiler implementation.
At the same time, as numerous formal proof assistants grow mature, we see
more and more computer-checked proofs of correctness for practical systems.
We have already mentioned two impressive examples – the Compcert compiler
from a large subset of C to a real assembler language [12], and the seL4 operating
system microkernel [10].

Many treatments of supercompilation (and related studies like optimal self-
application) use either a small subset of an existing language (like Core Haskell
[13] or FlatCurry [3]), or a tiny language operating on Lisp-like well-founded bi-
nary trees. Languages like I/LOOP [8,7] and S-Graph/TSG [5,2] were an impor-
tant source of inspiration for the development of SWhile. Non-Turing-complete
languages have long been a subject of research in computability and computa-
tional complexity theory (e.g. [9]). Our language of simple expressions can, in
particular, be seen as a generalization – from the domain of natural numbers to
the domain of binary trees – of the language of “simple programs” of Tsichritzis
[20]. The explicit use of a non-Turing-complete language to formulate parts of
the driving process in supercompilation appears to be a new result of this work.

The standard formulation of positive supercompilation distinguishes 4 phases
- driving (including unfolding), “whistle”, folding, and generalization [18]. The
separation of unfolding from the rest of the driving transformations, and their
splitting in two parts (normalization + positive information propagation) is a
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new result, although its roots can be traced to the author’s previous work [11].
As for the definition of normalization itself, similar transformations have been
used in many different contexts (e.g. [7]), unrelated to supercompilation.

5 Conclusions and Future Work

We have achieved a full formal verification, in Coq, of a greatly simplified su-
percompiler for a basic imperative language operating on binary-tree data. To
the best of our knowledge, this is the first attempt of a computer-checked proof
of correctness of a supercompiler or a similar transformer. An advantage of our
method is that it leads to a small-size formalization and verification source –
about 1100 non-empty, non-comment lines of Coq code3, of which about 45%
are definitions, and the rest are proofs. As a comparison, the formal verification
of the Compcert compiler amounts to about 42000 lines of Coq code [12].

As another advantage, our verification is organized in a very modular way,
thanks to a new refactoring of the supercompilation process into smaller pieces
that can be checked independently. We believe that this modularity makes the
approach more re-usable in different contexts.

There are a couple of important directions for future improvements. Firstly,
our object language is so simple that it is hard to read and very hard to pro-
gram in. While this is normal for a toy language crafted for research purposes,
the effort to improve its usability may be worthwhile. Making the language eas-
ier to program in is the simpler task – we can always add arbitrary amount of
syntax sugar in a preprocessing phase, or even a compiler from a higher-level
language to SWhile. The more challenging task is to make the program result-
ing from supercompilation easier to understand. Some form of post-processing
transformations may help, but probably will not be sufficient by themselves.

Secondly, our supercompiler is crippled in its current form, due to its very
limited definition of loop unrolling. We have tried some other, seemingly more
powerful forms of unrolling, omitted from this text. Unfortunately the prelimi-
nary experimentation on simple examples does not show good results. Further
research is needed to find a more powerful form of loop unrolling, if we want to
pass the “KMP test” [5,18]. Another interesting option to pursue is to switch
from an imperative language with a single while loop to a functional one with
a single recursive function (like the language F of N. D. Jones [8]). This switch
might also be beneficial for the readability of the resulting programs. A challenge
for this approach would be to keep a clean separation between unfolding and the
other parts of driving, but it appears feasible.

Beside the improvements of the method suggested above, some practical ap-
plications might be interesting to study. For example, we could re-use parts of
the current development as new proof tactics in Coq, using the mechanism of
proof by reflection [4]. Another idea is to re-use the decomposition of supercom-
pilation in smaller parts, that has helped the current development, for repeating

3 as reported by the coqwc tool
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the verification in another proof system, possibly one based on supercompilation
itself.
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Abstract. It has been long recognised that partial evaluation is related
to proof normalisation. Normalisation by evaluation, which has been pre-
sented for theories with simple types, has made this correspondence for-
mal. Recently Andreas Abel formalised an algorithm for normalisation
by evaluation for System F . This is an important step towards the use
of such techniques on practical functional programming languages such
as Haskell which can reasonably be embedded in relatives of System Fω.
Supercompilation is a program transformation technique which performs
a super-set of the simplifications performed by partial evaluation. The
focus of this paper is to formalise the relationship between supercompila-
tion and normalisation by evaluation for System F with recursive types
and terms.

1 Introduction

Partial evaluation has arisen in two rather distinct settings. The first setting is
in practical attempts to improve program performance. The second is the use of
evaluation to produce normal forms for proofs in a Curry Howard setting [20].

The use of a term language with recursion, however, puts fundamental limits
on the practical use of evaluation as a tool for normalisation or optimisation.
Due to this fact the program transformation community has developed a number
of tools for improving the performance of programs, including deforestation [27],
fusion [14] and supercompilation [18].

Supercompilation [24] is a program transformation which performs a super-
set of the optimisations performed by fusion and deforestation. Supercompilation
is a complex program transformation making using of folds [3]. Folds, which
introduce new recursive structures, can sometimes introduce non-termination so
certain side conditions must be met in order to ensure their correctness.

When using program transformations for languages which are not strongly
normalising, it is important to ensure that the transformation preservers the
meaning of the program. Bisimilarity, a technique developed by Milner, [13] was
used by Gordon [7] as an alternative to context equivalence for showing semantic
equivalence of programs in all contexts. This is achieved by associating terms
with transition systems, and showing bisimilarity of the transition systems. The
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technique can be usefully applied to automatic program transformations in order
to prove correctness.

This paper introduces several novel developments. It demonstrates a tran-
sition system framework for System F with recursive types. This allows us to
define a bisimilarity relation on recursive terms in System F which demonstrates
behavioural equivalence. We use these transition systems as a semantic domain
to present a system which closely resembles Normalisation by Evaluation (NbE)
[2] [1]. The techniques which are already common place in the supercompila-
tion and meta-computation communities of creating partial process trees and
then extracting programs are formalised in such a way as to demonstrate the
connection with NbE.

2 Normalisation By Evaluation

NbE makes use of two functions: a semantic interpretation function f : Syntax→
Semantics, and a reification function g : Semantics→ Syntax. The idea behind
the technique is that we can arrive at a normal form for a term t (a unique
syntactic description) by transforming into the semantic domain f(t) and then
reifying as a term t′ = g(f(t)). This normalisation corresponds with eliminations
of cuts from the type tree. We will see this in more detail later.

In our presentation, the semantic interpretation function is the supercompi-
lation algorithm, which presents a transition system as the semantic representa-
tive. The reason for this is that labelled transition systems serve as a compact
representation of potential program traces. When we want to establish bisimi-
larity, we need a formalism in which to show that we have an observable trace
equivalence between programs. This idea was expressed by Turchin in [22]. This
trace equivalence can be established between two systems using a bisimulation
of transition systems.

Reification is performed by program extraction which provides us, again, with
a term in our original source language.

While the techniques given here are very similar to ones used in NbE, it must
be stressed that positive supercompilation will not provide unique normal forms
for arbitrary terms. While it provides normal forms for any finitary expression
without function symbols, it can not provide a unique finite representation for
all transition systems. A simple proof based on the Full-Employment theorem
suffices to show that any attempt to do so, except for sub-Turing complete
languages will fail.

Theorem 1. There is no normal form, giving syntactic equivalence modulo α-
renaming and function symbol renaming, for arbitrary terms t for a Turing com-
plete functional programming language.

Proof. Assume a normalisation function f . We can apply this function to a
program Ω, known not to terminate, to obtain a canonical term f(Ω) = Ωc.
We may now test any term t for halting by applying f and comparing to Ωc
syntactically, violating the Halting theorem. ut
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So if we can not obtain normal forms, the question naturally arises, why
should we view more general program transformation through a similar lens to
the one given by NbE? One answer is that in some instances the technique can
be used for deciding the equality of terms as in [10] [11]. The fragment of ap-
plicability may in fact be quite large and could include languages with infinite
transition systems. In addition, the use of transition systems for the semantic
domain means that we can use bisimulation equivalence of transition systems as
a means by which to justify the substitution of programs generally enabling us
to use it as a general tool for showing semantic equivalence of program transfor-
mations.

3 Language

The language we present is a functional programming language, which we will
call ΛF with a type system based on System F with recursive types. The use of
System F typing allows us to ensure that transitions can be found for any term.
Our term language will follow closely on the one used by Abel [1]. We will use
two distinct sets of variables for our exposition, term variables x, y drawn from
the set Var and type variables X drawn from the set TyVar.

Fun 3 f, g Function Symbols
Ty 3 A,B,C ::= 1 | X | A→ B | ∀X.A | A+B | A×B Types

| νX.A
Tr 3 r, s, t ::= x | f | () | λx : A.t | ΛX.t | r s | r A Terms

| inl(t) | inr(t) | (t, s)
| in(t, A) | out(t, A)
| case r of inl(x1)⇒ s ; inr(x2)⇒ t
| split r as x1, x2 in s

Ctx 3 Γ ::= · | Γ,X | Γ, x : A Contexts

We will describe substitutions using the map σ which will represent assign-
ment of variables to terms and type variables to types. Extension of a substi-
tution will be written as σ ∪ (x, t) or σ ∪ (X,A). We will use a function FV (t)
to obtain the free type and term variables from a term. Substitutions of a sin-
gle variable will be written [X := A] or [x := t] for type and term variables
respectively.

In order to simplify our presentation, we will also need to introduce recursive
terms. This change is the point of departure between this work and standard
presentations of NbE and our framework for supercompilation.

Recursive terms will be represented using function constants. Function con-
stants will be drawn from a set F. We will couple our terms with a function ∆
which associates a function constant f with a term e, ∆(f) = e, where e may
itself contain any function constants in the domain of ∆.

The use of ∆ will allow us to use arbitrary recursive and mutually recursive
function definitions. In so doing, however, we will need to add a rule to System
F which will make our type theory potentially unsound in a way which depends
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on the definition of ∆. The simplest example is given by ∆(f) = f which will
clearly be well typed in our system for an arbitrary type A. This is the usual
case for functional programming languages, and we hope to demonstrate how
unsoundness can sometimes be remedied to produce a constructive type theory
in a future paper.

For a term t with type T in a context Γ we will write Γ ` t : T . The type
derivation is given by the following rules:

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` t : B

Γ ` (λx : A.t) : A→ B

Γ ` r : A→ B Γ ` s : A
Γ ` r s : B

Γ,X ` t : A
X 6∈ FV(Γ )

Γ ` ΛX.t : ∀X.A

Γ ` t : ∀A.T
Γ ` t B : A[X := B]

Γ, f : A ` ∆(f) : A

Γ ` f : A

Γ ` () : 1
Γ ` r : A Γ ` s : B

Γ ` (r, s) : A×B

Γ ` t : T
Γ ` inl(t) : (T + S)

Γ ` t : S
Γ ` inr(t) : (T + S)

U = νX.T Γ ` t : T X 6∈FV(Γ)
Γ ` out(t, U) : T [X :=U ]

U = νX.T Γ ` t : T [X := U ]

Γ ` in(t, U) : U

Γ ` e : T + S Γ, x : T ` t : U Γ, y : S ` s : U

Γ ` (case e of inl(x)⇒ t ; inr(y)⇒ s) : U

Γ ` s : T × S Γ, x : T, y : S ` t : U

Γ ` (split s as x1, x2 in t) : U

System F without recursive types is strongly normalising, however due to
the inclusion of infinite types via the νX.φ(X) type constructor, we can lose the
strong normalisation property, even in the absence of function constant unfolding
if our types are not restricted [26]. This can be seen by the simple example of the
data type D := νX.X → X which. A concrete representative of this type which
does not terminate, despite being well typed and having no function constants,
is given by the term:

(λf.out(f in(f,D), D))(in((λf.out(f in(f,D), D)), D))

We can, however, recover the normalisation property by imposing a positivity
restriction on types [6].

With this restriction we can be assured that never encounter an infinite
number of transient reductions [17], where transient reductions are those which
do not result in a transition. This effectively allows us to ensure that all infinite
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behaviour will be present in the graph only, allowing us to carefully segregate
out non-termination by other means.

(λx : T.t) s β t[x := s] (ΛA : κ.t) T  τ t[A := T ]

t s
split t · · · α split s · · ·

t s
case t · · · α case s · · ·

t t′

t s α t
′ s

out(in(s, T ), T ) ν s

f , e ∈ ∆
f  δ e

split (r, s) as x, y in t π t[x := r, y := s]

case inr(t) of inl(x)⇒ r ; inr(y)⇒ s ι s[y := t]

case inl(t) of inl(x)⇒ r ; inr(y)⇒ s ι r[x := t]

 ≡ β ∪ α ∪ τ ∪ ι ∪ π ∪ ν

We define a reduction relation which will allow us to simplify our proofs of
a given type using a relation  . Notice the  relation does not make use of
function unfolding. The reason for this is that the  δ relation may not reduce
finitely, as with the example given previously ∆(f) = f . By omitting  δ we
ensure that we can always obtain a head normal form which we will describe
more completely later.

t + t′ iff t t′ ∨ t t′′ ∧ t′′  + t′

t ∗ t′ iff t = t′ ∨ t + t′

t 6⇓ iff ¬∃s.t s
t ⇓ h iff t ∗ h
t ⇓ ::= h where t ⇓ h

Table 1: Derived Relations

In Table 1 we give some relations which are derived from the  evaluation
relation. Here +, the transitive closure of is taken to be the least fixed point
of the recursive equation. The transitive reflexive closure  ∗ is defined in terms
of the transitive closure.

Because of our careful definition of  , we can use the relation ⇓ to arrive at
a head normal form. This consists of an outermost syntactic form which has is
either a value or a context.

Formally, divide the grammar of our language into the following classes:
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O 3 o, p := () | λx : A.t | ΛA.t| (r, s) Observable
| inl(t) | inr(t) | in(t, A)

V 3 v := x | f | v t | v A Irreducible
E 3 e := − | out(e,A) Context

:= case e of inl(x)⇒ t ; inr(y)⇒ s
:= split e as x, y in s

Where we view e[t] as shorthand for the replacement of the privileged variable
− with t in e, e[− := t]. Using this we can derive the following decomposition
lemma.

Lemma 1 (Unique Decomposition). A term s such that t ⇓ s can be written
as e[v] or s ∈ O.

Proof (Proof Sketch). We proceed by induction on type derivations for a term
t, starting with the empty context.

If t ∈ O then the context is empty. This follows from the fact that any type
correct context for an element of O would lead to a reduction.

If t ∈ V then we are done.
For the case t = case t′ of inl(x) ⇒ s ; inr(y) ⇒ r: By the inductive

hypothesis, t′ = e[v] since otherwise t′ ∈ O which would reduce. Therefore
t = (case e of inl(x) ⇒ s ; inr(y) ⇒ r)[v], and (case e of inl(x) ⇒ s ; inr(y) ⇒
r) ∈ E.

The remaining cases follow similarly. ut

4 Transition System

For the purposes of reasoning about functional programs, and indeed the mean-
ing of types themselves it is useful to use transition systems as a semantic domain.
This approach is related to the infinite histories approach taken by Turchin [23]
and is also quite close to the approach taken in process calculi such as CCS [12]
and CSP [8]. It is also similar to the account given by monoidal histories [5].
The framework given here is based on the one given by Gordon in [7].

The basic idea behind the approach presented here is that terms are po-
tentially infinite trees, and variables represent parametrisation with respect to
an unknown transition system of appropriate type. Types themselves can be
interpreted as restrictions on the form of the transition system.

An example of a value term which is represented by a finite tree is the in-
habitant of the type Nat := νX.1 + X which we can call zero, in(inl(()), Nat),
given in a Church-numeral style encoding, which is demonstrated in Fig. 1a.

In the interpretation of a term with variables, we will view the variables’
semantics as being a parametrisation of transition system at the type of that
variable. The parametrisation with respect to a transition system may be seen
as an external choice non-determinism. That is, operationally, an equivalent
program must have the same behaviour given the same external choices. Our
various available reductions which perform substitution are an internalisation of
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fold

inl

fold(inl(), Nat)

inl()

()

(a) Zero

t := inl(x) t := inr(y)

case t of inl(x)→ e0 | inr(y)→ e1

[t := inl(x)]e0 [t := inr(y)]e1

(b) Case

Fig. 1: Transition Systems

a choice which has become known. We see an example of this in the transition
system in Fig. 1b.

Formally, a transition system is a structure which consists of a collection
of states and actions and a relation which associates states via some action.
Formally such a system is described by a tuple as follows:

T = (S,A, δ : S ×A× S),

Where S is a set of states, A is a set of actions and δ(s, α, s′) is a relation
representing potential transitions from a state s to some state s′ by way of some
action α ∈ A.

For our purposes, sets of states will be represented by programs, and transi-
tions will be generated according to the operational behaviour of the program.
Intuitively, we mean that the behaviour of a program makes choices for a calling
program.

Transitions resulting from δ-reductions are not observable in the sense that
they do not have any visible operational behaviour to the caller. This might
seem odd in that a non-terminating program is certainly different than one
which terminates. However, an infinite number of δ transitions is a failure to
make a choice and is equivalent (that is, bisimilar) to a transition system with
no further edges.

Formally we mean that we will not distinguish two transition systems which
have transitions with arbitrarily many different transitions resulting from delta-
reductions. This will be made explicit when we talk about bisimiliarity later. We
will however explicitly notate them in our graphs for book keeping, in order to
help us to reason about termination behaviour.

We define LΓ as the set of terms in some typing context Γ having type
derivations.

We define the function Ξ : LΓ → T as a function taking derivations in our
language to a transition system. We will abbreviate the application of Ξ to some
context Γ and a well typed term Γ ` t : T as Ξ[t]Γ .
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We assume that variables are renamed to avoid capturing as is the case with
application of lambda terms. In practice this can be done using a locally nameless
representation.

We will overload the meaning of the ∪ operator in order that we can use
the notation (r, a, s) ∪ Ξ[t] to denote the transition system ({t, t′} ∪ S, {a} ∪
A, {(r, a, s)} ∪ δ) where Ξ[t] = (S,A, δ). The application of ∪ to two transition
systems will be given by their component-wise unions. We will write the empty
transition system as Ω.

We will also abuse the notation for substitution, writing [v := t] for the re-
placement of some irreducible term v with a term t. This replacement is justified
since we will retain the same termination behaviour as v is in a reduct position.

We can now generate the transition system of a term t by applying Ξ to the
irreducible term t′ = t ⇓. Ξ will convert terms in head normal form to transition
systems.

Ξ[λx : A.t]Γ ::= (λx : A.t, x : A, t ⇓) ∪Ξ[⇓]Γ,x:T

Ξ[ΛA.t]Γ ::= (ΛA.t, A, t ⇓) ∪Ξ[t ⇓]Γ,A

Ξ[()]Γ ::= Ω

Ξ[(r, s)]Γ ::= ((r, s), fst, r ⇓) ∪ ((r, s), snd, s ⇓) ∪Ξ[r ⇓]Γ ∪Ξ[s ⇓]Γ

Ξ[inl(t)]Γ ::= inl(t)
inl−→ Ξ[t ⇓]Γ

Ξ[inr(t)]Γ ::= inr(t)
inr−−→ Ξ[t ⇓]Γ

Ξ[in(t, A)]Γ ::= in(t, A)
out−−→ Ξ[t ⇓]Γ

Ξ[out(t, A)]Γ ::= (out(t, A), out, t ⇓) ∪Ξ[t ⇓]Γ

Ξ[e[v]]Γ ::= ({v}, v, ∅) ∪Ω

Ξ[e[f ]]Γ ::= (e[f ], δf , e[∆(f)]) ∪Ξ[e[∆(f)]]Γ

Ξ[e[case v of inl(x)⇒ r ; inr(y)⇒ s]]Γ ::=
(e[case v of inl(x)⇒ r ; inr(y)⇒ s], (v := inl(x1)), e[r[v := inl(x)]])∪
(e[case v of inl(x)⇒ r ; inr(y)⇒ s], (v := inr(x2)), e[s[v := inr(y)]])∪
Ξ[e[r[v := inl(x)]]]Γ ∪Ξ[e[s[v := inl(y)]]]Γ

Ξ[e[split v as x, y in r]]Γ ::=
(e[split v as x1, x2 in e], (v := (x1, x2)), r[v := (x1, x2)])∪
Ξ[r[v := (x1, x2)]]Γ
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Notice the addition of the δ transition for a function variable f . This transi-
tion will not be directly observable, but will be used for book keeping, so that
we can avoid the problem of non-termination at nodes. Now that we have a
transition system for each term in the above described normal form, we can be
assured of a having a (potentially infinite) transition system for every program.

We carry the context Γ through the computation because it is needed later for
generalisation and abstraction. In an implementation it is convenient to perform
the transformation on derivations rather than terms, such that the appropriate
context is always present.

Once transition systems are given for terms, we can proceed to define bisim-
ilarity. Bisimilarity is a coinductive equality relation. If two terms are bisimilar,
we should not be able to distinguish them by any number of experiments on
the terms. This is effectively identical to contextual equivalence, but allows us
to look directly at the transition systems to establish bisimilarity, rather than
having to cope with quantification over contexts. The technical machinery is
consequently less complex [7].

Bisimilarity is defined as a relation between two transition systems with the
following definition.

Definition 1 (Bisimilarity). A term s is bisimilar to a term t, written s ∼ t,
if the following two conditions hold:

– ∀(s, α, s′) ∈ δ → ∃(t, α, t′) ∈ δ ∧ s′ ∼ t′

– ∀(t, α, t′) ∈ δ → ∃(s, α, s′) ∈ δ ∧ s′ ∼ t′

Since bisimilarity is the greatest fixed point of such a relation, we need only
to produce a relation that demonstrates these properties, and it will be a subset
of the bisimilarity relation.

In order to make use of transition systems for our theory however, we will
also need to make use of a notion of composition. This will allow us to generalise
transition systems and to make them parametric. The basic idea is to make
explicit a notion of composition of transition systems such that the following
theorem holds. This notion of composition is similar to the idea of composition
for normalisation by partial evaluation [1].

Definition 2 (Composition). Composition of trees is achieved by replacement
of states in the transition system or replacement of labels on transitions.
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Ξ[λx : T.s]Γ ·Ξ[t] ::= Ξ[s[x := t] ⇓]Γ
Ξ[ΛA.s]Γ · T ::= Ξ[s[A := T ] ⇓]Γ
Ξ[v]Γ ·Ξ[r]Γ ::= (v r, v r, ∅) ∪Ω
Ξ[e[case v of inl(x)⇒ r ; inr(y)⇒ s]]Γ ·Ξ[t]Γ ::=

(e[case v of inl(x)⇒ r ; inr(y)⇒ s] t, (v := inl(x)), (e[r[v := inl(x)]] t) ⇓)∪
Ξ[(e[r[v := inl(x)]] t) ⇓]Γ,x:A∪
(e[case v of inl(x)⇒ r ; inr(y)⇒ s] t, (v := inr(y)), (e[s[v := inr(y)]] t) ⇓)∪
Ξ[(e[s[v := inr(y)]] t) ⇓]Γ,y:B

Ξ[e[split v as x, y in s]]Γ ·Ξ[r]Γ ::=
(e[split v as x, y in e] r, (v := (x, y)), (e[v := (x, y)] r) ⇓)∪
Ξ[(e[v := (x, y)] r) ⇓]Γ,x:A,y:B

Ξ[e[f ]]Γ ·Ξ[r]Γ ::= (e[f ], δf, e[∆(f)]) ∪ (Ξ[e[∆(f)]]Γ ·Ξ[r]Γ )

Theorem 2 (Composition is Bisimilar). Ξ[t]·Ξ[s] is defined whenever Ξ[t s]
is defined and enjoys the property that Ξ[t s] ∼ Ξ[t] ·Ξ[s].

Proof. The proof is by construction making use of substitution and the λ and
Λ cases are therefore trivial. The case and split cases also provide identical
transitions in both cases. The remaining case is function constant unfolding in
a context.

If we have t = e[f ] then t s is e[f ] s. Unfolding f in either situation must lead
to either a new function constant to unfold, t′ = e[g] and t′ s is e[g] s (with f not
necessarily different than g). Either we eventually encounter a λ or Λ leading to
a reduction, or we encounter an infinite number of function constant un-foldings
in either case, which, since delta transitions are not distinguished by bisimilarity,
are bisimilar.

We would now like to provide a reification of transition systems back into
terms. However, in general these terms may be of infinite size. In order to ensure
finite terms we will need to find a finite representation of our transition system.
Essentially this requires the production of a graph using our transition system
function Ξ and composition. Practically this can be achieved using supercompi-
lation.

5 Supercompilation

Supercompilation is a program transformation framework first developed by
Turchin [25]. Sørensen, Glück and Jones defined positive supercompilation [19],
which is an algorithm for program transformation. We will present a system
modeled on the positive supercompilation algorithm extended to deal explicitly
with types in System F . We then show the correctness of this algorithm using
bisimilarity.

Supercompilation uses the concepts of driving, generalisation and folding.
Driving is the production of a process tree by way of normal order evaluation.
For those familiar with supercompilation, the above descriptions of transition
systems will look very familiar.
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The difference between the two is largely in the explicit labeling of transi-
tions, allowing bisimilarity to be defined, and the use of folding. To simplify the
presentation we will not use the traditional formulation of driving, but we will
proceed to define supercompilation directly in terms of transition systems.

Since process trees are potentially infinite, we will require some mechanism
of creating a finitary representation. Folding involves describing a transition
system in terms of states in the transition system which are α-equivalent, that
is, equivalent modulo bound variable renaming. Instead of representing the entire
potentially infinite unfolding, we can now point back to a prior state set in the
transition system.

Definition 3 (Abstraction). Given a type derivation Γ ` t : T , We can form

a term, ` λΓ.s :
−→
S → T by taking each variable (x, S) ∈ Γ and abstracting over

t with x : S and for each type variable X with ΛX.t.

Theorem 3 (Abstraction is Bisimilar). If a term t is a renaming of a term
s, such that tσ = s where σ are variables drawn from a typing context Γ , then
Ξ[t] ∼ Ξ[λΓ.t −→x ] ∼ Ξ[λΓ.t] · Ξ[x0] · · · · · Ξ[xn]] where xi is the ith variable in−→x .

The proof of this theorem follows directly from the composition lemma. This
will allow us to re-use elements of the transition system previously encountered.

Generalisation can be considered the dual of unification and is sometimes
called anti-unification [16]. Generalisation is defined over the semi-lattice induced
by the instantiation ordering.

Definition 4 (Instantiation Ordering). A term t : A is said to be an instance
of a term s : B, if there is a substitution θ such that t : A = (s : B)θ. We write
that t is an instance of s or t : A � s : B. Similarly, a typing context Γ is said to
be an instance of a typing context Γ ′ if each variable is an instance, or Γ � Γ ′.

The least general generalisation of terms for System F is undecidable [9].
In our implementation we have restricted ourselves to generalisation of higher
order patterns using a method similar to the one described in [15].

It is the case that any generalisation can be used for the purposes of assisting
in the creation of a finite graph, but the particulars of the generalisation will
affect the final form of our transition system.

Definition 5 (Generalisation). A generalisation operator rt s = (t, θ1, θ2) is
defined such that tθ1 = r and tθ2 = s.

Now, to control the process of generating the process tree, we need to use
the composition property and some relation that ensures we can find a finite
representation of our potentially infinite transition system. It is typical to make
use of the homeomorphic embedding [4] for this purpose. It is a well quasi-
order and ensures that there are no infinite sequences of terms which can not be
ordered provided that the set of function constants is finite. Any relation which
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ensures that unfolding is restricted to finite sequences is sufficient. We will call
this our whistle relation.

It is useful to have a reflection to the original syntax which reproduces the
original term, modulo naming of functions and variables. This will be used to
ensure that we can recover a finite transition system even if we are unable to
find new folds. We will use this in our supercompilation algorithm in order to
give up when we may no longer proceed.

Definition 6 (Identity). Id[t] is defined as the transition system Ξ[t]Γ where
every function call in reduct position is replaced with a composition Ξ[f ]Γ ·Ξ[s]Γ .
We may use this composition to produce a finite graph for any term, since the
original term is itself finite.

Definition 7 (Reachable). A term t is said to be reachable from s if there is a
sequence of terms ti such that (s, a, t0) ∈ δ and (tn, a, t) ∈ δ and (ti, a, ti+1) ∈ δ.

Definition 8 (Ancestor). A term t is said to be an ancestor of a term s if s
is reachable by delta from t.

The general form of supercompilation can now be described as follows.

Definition 9 (Supercompilation). The positive supercompilation of a term t
can be produced by lazily producing the transition system Ξ[t′] where t′ = t ⇓.
We will write the resulting finite representation of the transition system as S[t′].

When a term s is encountered which has an ancestor r which satisfies the
whistle relation, we have a number of cases:

If s � r, then we abstract Ξ[s] to obtain Ξ[r] ·Ξ[θ(x0)] · · · · ·Ξ[θ(xn)] where θ
is the substitution that proves the instantiation and xi are the variables in theta.
We continue the algorithm on each of the Ξ[θ(x0)].

Otherwise, generalisation is applied to s and the term r, s t r = (eg, θ1, θ2).
We use abstraction to write: Ξ[r]Γ Ξ[λΓ.eg]Γ ·Ξ[θ1(x0)]Γ · · · · ·Ξ[θ1(xn)]Γ and
continue the algorithm on Ξ[eg] and each of the θ1(xi).

If generalisation fails, we can give up using Id[s]. Otherwise we proceed on
each term reachable from s by δ.

6 Reification

Now that we have a suitable definition of bisimilarity, which captures the notion
of even infinite program behaviours being identical, we can give a definintion for
the reification of a term. This reflection back into terms is usually called program
extraction or residuation in the meta-computation community.

We define the function K(τ) to return the set of transition systems starting

at child nodes for some transition system τ . We will use the notation r
a−→ τ to

mean that τ is the transition system starting from δ(r, a).

Definition 10 (Reification). Reification is defined on the structure of process
trees in the following way.
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if τσ ∈ K(τ) then ∆ = (f,Π[τ ])

Π[Ξ[t] ·Ξ[s]] = Π[Ξ[t]] Π[Ξ[s]]

Π[r
x:T−−→ τ ]∆ = λx : T.Π[τ ]∆

Π[r
A−→ τ ]∆ = ΛA.Π[τ ]∆

Π[r
x
−→
t :=inl(x1)−−−−−−−−→ τ1,

r
y
−→
t :=inr(x2)−−−−−−−−−→ τ2]∆ = case (x

−→
t ) of inl(x)⇒ Π[τ1]∆ ; inr(y)⇒ Π[τ2]∆

Π[r
x
−→
t :=(x1,x2)−−−−−−−−−→ τ ]∆ = split (x

−→
t ) as x1, x2 in Π[τ ]∆

Π[r
fst−→ τ, r

snd−−→ ψ] = (Π[τ ]∆, Π[ψ]∆)

Π[r
κ−→ s] = κ(s)

Where κ ∈ {inl, inr, in, out}

Theorem 4 (Reification). The reification function Π of a transition system
τ associates a term and function constant relation ∆ with the transition system
such that the following holds:

S[Π[S[t]]] ∼ S[t]

This follows by construction by the definition of ∼, Π and S.

7 Example

The following program which represents the double append problem is by now
well known [17]. Our example, however is slightly different than former presenta-
tions in that the types are explicitly represented, and the semantics are intended
to be captured by the transition labels.

List = ∀A.νY.1 + (A× Y )
∆ = {
(app,
ΛA.λxs : List A.λys : List A.

case out(xs, 1 +A× Y ) of
inl(u)⇒ ys

; inr(p)⇒ in(inr(split p as x, xs′ in (x, app xs′ ys)), Y )
)
}
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δapp

δapp

xs := inl(u) xs := inr(p)

ys := inl(u) ys := inr(p) fold

inr

p := (x, xs′)

fst snd

θ ≡ (xs′, xs)

app A (app A xs ys) zs

· · ·

· · ·

· · · · · ·

zs app ys zs · · ·

· · ·

split p as (x, xs′)in · · ·

x app A (app A (xs′ ys)) zs

Fig. 2: Double Append
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Now, we wish to find the map ∆ and term for Π[Ξ[t]] where

t = app A (app A xs ys) zs.Ξ[t]

This yields the transition system given in Fig. 2, with the following program
yielded by Π[Ξ[t]].

t = (appapp xs ys zs) ∆ = {
(appapp,
ΛA.λxs : List A.λys : List A.λzs : List A.

case out(xs, List A) of
inl(u)⇒ app ys zs

; inr(p)⇒ case out(ys, List A) of
inl(u)⇒ zs

; inr(p)⇒ in(inr(split p as x,xs′ in (x,appapp xs′ ys zs)), Y )
),
(app,
ΛA.λxs : List A.λys : List A.

case out(xs, List A) of
inl(u)⇒ ys

; inr(p)⇒ in(inr(split p as x, xs′ in (x, app xs′ ys)), Y )
)
}

Here we can see that S[Π[S[t]]] ∼ S[t] by inspection, a feature that follows
from the idempotence of the composition S ◦Π.

8 Conclusion and Related Work

We have demonstrated a parallel between NbE and supercompilation for a Sys-
tem F with sums, products and recursive types. The intent is to clarify exactly
in what way it can serve as a form of normalisation. In addition we have used
bisimilarity of transition systems, which we use as the semantic domain, to show
the correctness of our transformations. This simplifies the presentation, but also
allows us to think more generally about term equivalence and the establishment
of correct program transformations.

This work also makes a first step to including languages with polymorphic
type systems directly into the supercompilation procedure while including type
information. As we can see from the generalisation procedure, type information
can not be ignored in the context of polymorphic types as it has a bearing
on the form that generalisations will take and when generalisation can occur.
If supercompilation is to be applied in the context of languages such as the
Calculus of Constructions this will be even more critical.

Normalisation by Evaluation for a simple type theory is presented in [2]. A
similar system defined for System F is given by Abel in [1]. Our approach differs
in that we introduce a (potentially unsound) type theory based on System F
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which uses transition systems as the semantic domain. Our system does not
produce true normal forms as these NbE systems do, but is schematically quite
similar.

Supercompilation was first described by Turchin [22]. Turchin is the first to
recognise program configurations as representing some number of (potentially
infinite) states, and process trees as being representations of potentially infinite
traces. The system we use here is modeled on a description of positive super-
compilation given by Sørensen, Glück and Jones [19].

The similarity of NbE and supercompilation have been described by Lisitsa
and Webster [11] as well as Romanenko and Kluchnikov [10].

This work differs in spelling out the correspondence more completely. In
addition it includes explicit type information. Instead of using the traditional
process tree or partial process tree, we present transition systems as a semantic
domain. This serves much the same purpose as a process tree; however the
presentation varies slightly in that it provides us with a direct means of showing
equivalence in the semantic domain. This is used to motivate the notion of our
reflection operator.

In addition, to make explicit the connections with NbE it is important that
supercompilation is done on terms with type information included. This paper
is a preliminary step in this direction. In developing the use of supercompilation
for constructive type theories [6], this will be particularly important.

In future work we hope to describe conditions which ensure that the type
system is sound with respect to the function ∆. In addition it would be useful
to extend the system to System Fω to bring it closer to being of direct use for
the Haskell Core which uses a variant of System Fω [21].

It is also conceivable that normal forms of transition systems actually do exist
in the context of constructive type theories with infinite terms, at least since the
languages are necessarily sub-Turing complete and no simple application of the
Full Employment Theorem can be made. It would be of value to explore this
potentiality.

In the presentation given here, iso-recursive infinite types are given using
explicit constructors representing the isomorphism. This may not be strictly
necessary as it is possible to encode least and greatest fixed points directly in
System F using universal quantification and impredicativity [28]. Indeed, the
introduction and elimination rules for sums and products can also be encoded
leaving only β, τ -reduction. While, for efficiency reasons and convenience, it is
useful to have these constructors and destructors represented explicitly, it would
be interesting to see how an exposition without them compares.

It would also be useful to include η-normalisation and variants which include
function-symbol application, into the scheme, which has not been dealt with in
this work. The inclusion of η would increase the number of programs which could
find a normal form for the purpose of deducing equality [10].

Acknowledgements. This work is supported, in part, by Science Foun-
dation Ireland grant 03/CE2/I303 1 to Lero, the Irish Software Engineering
Research Centre.
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A Method of Verification of Functional
Programs Based on Graph Models

Andrew M. Mironov

Moscow State University, Russia

Abstract. In the paper we introduce a concept of a graph model of a
functional program. We show how to use this model for verification of
functional programs.

Keywords: functional programs, graph model, verification.

1 Introduction

1.1 The problem of verification of programs

The problem of verification of programs has the following form:

– given a program P and its formal specification S,
– prove that P |= S (i.e. P meets S).

In this paper we consider the following special case of this problem:

– P is a functional program (FP)
– S is another FP, and
– P |= S means that functions computed by P and S are equal.

For example, S is a description of a required function, and P is an implementa-
tion of this function.

1.2 Comparison with related works

The problem of verification of FPs is considered in many works (see, for example,
[4]–[9]). The main methods of verification of FPs are computational induction
and structural induction (a bried description of these methods can be found in
[4], ch. 5). Verification of FPs with use of these methods is based on construction
of logical assertions related to verified FPs, which are called admissible predi-
cates. Because there is no a general algorithm of construction of such predicates,
then the most realistic way of verification of FPs based on these methods is an
elaboration of interactive procedures of synthesis of corresponding admissible
predicates.

The main advantage of verification method of FPs proposed in the present
paper in comparison with other works is the following. If verified FPs are rep-
resented by graph models, then the problem of construction of a corresponding
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admissible predicate can be decomposed to the problem of construction of logical
assertions related to some pairs of nodes of these graph models, and a complexity
of these assertions can be essentially less than a complexity of the admissible
predicate.

2 A notion of a functional program

In this paper we consider a simplified notion of a FP. Without loss of generality,
we assume that FPs under consideration does not contain nested recursions.

For precise definition of a notion of a FP we need in auxiliary notions de-
scribed below.

2.1 Variables, constants, functional symbols

We assume that there are given

– a set D of values, which contains all natural numbers
– a set Con of constants, and every constant c ∈ Con is associated with a

value which is denoted by the same symbol c
– a set V ar of variables, and every variable x ∈ V ar is associated with a set
Dx ⊆ D of values, which can be substituted instead of this variable

– a set Fun of function symbols (FSs), and every f ∈ Fun is associated
with an integer number ar(f) ≥ 1, which is called an arity of the FS f .

Some of FSs are called primary FSs. Every primary FS is associated with
a partial function, which is denoted by the same symbol f , and has the form

f : Dar(f) → D
We assume that the set Fun contains the following FSs.

– FS if_then_else of the arity 3.
A corresponding function maps every triple

(d1, d2, d3) ∈ D3

• to d2, if d1 = 1, and
• to d3, otherwise.

For every triple (d1, d2, d3) ∈ D3 the expression

if_then_else (d1, d2, d3)

will be denoted briefly as
d1 ? d2 : d3

– FS eq of arity 2. A corresponding function maps every pair (d1, d2)
• to 1, if d1 = d2, and
• to 0, otherwise.

For every pair (d1, d2) ∈ D2 the expression eq (d1, d2) will be denoted briefly
as d1 = d2.

Below the symbol Fun+ denotes a set of all FSs which differ from if_then_else.
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2.2 Expressions, substitutions, evaluations

Expressions are constructed from variables, constants and FSs. The set of all
expressions is defined as follows.

1. Every variable and every constant is an expression.
2. For

– every list of expressions e1, . . . , en, and
– every FS f of arity n

the string
f(e1, . . . , en)

is an expression.

A substitution is a string θ of the form

θ = [x1 := e1, . . . , xk := ek] (1)

where

– x1, . . . , xk is a list of distinct variables, and
– e1, . . . , ek are expressions.

For every substitution θ of the form (1), and every expression e the string
θe denotes the result of replacement in e every variable xi with corresponding
expression ei.

An evaluation is a partial function of the form

ξ : V ar → D
For every pair ξ1, ξ2 of evaluations, and every variable x ∈ V ar, the string

ξ1(x) = ξ2(x)

denotes the fact that values ξ1(x) and ξ2(x) either are both undefined, or are
both defined and equal.

For every expression e a value ξ(e) of e on evaluation ξ is defined iff one of
the following conditions holds.

1. e = x ∈ V ar, and ξ(x) is defined. In this case ξ(e)
def
= ξ(x).

2. e = c ∈ Con. In this case ξ(e)
def
= c.

3. e has the form e1 ? e2 : e3, and ξ(e1) is defined. In this case

– if ξ(e1) = 1, then ξ(e)
def
= ξ(e2), i.e.

• either ξ(e) and ξ(e2) are both undefined ,
• or ξ(e) and ξ(e2) are both defined and equal,

– if ξ(e1) 6= 1, then ξ(e)
def
= ξ(e3)

4. e has the form f(e1, . . . , ek), and
– f ∈ Fun+
– FS f is associated with a partial function
– values ξ(e1), . . . , ξ(ek) are defined,
– a value of function f on the tuple (ξ(e1), . . . , ξ(ek)) is defined.

In this case
ξ(e)

def
= f(ξ(e1), . . . , ξ(ek))
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2.3 Functional programs

A functional program (FP) is a system of equations of the form





f1(x11, . . . , x1k1) = e1

. . .

fn(xn1, . . . , xnkn
) = en

(2)

where

– f1, . . . , fn are distinct FSs, which are names of functions, defined by this
FP,
(all the FSs f1, . . . , fn are not primary FSs)

– x11, . . . , xnkn
are distinct variables, which are formal parameters of the de-

fined functions, and
– e1, . . . , en are expressions with the following properties: for every i = 1, . . . , n
• the set of all variables occurring in ei, is equal to the set

{xi1, . . . , xiki}

• every FS occurred in ei,
∗ either is a primary FS,
∗ or belongs to the set {f1, . . . , fn}.

• every subexpression of ei of the form fj(. . .) contains only one non-
primary FS (i.e. a FP does not contain nested recursions).

2.4 Functions defined by FPs

Functions defined by FPs are computed by a standard recursion: if a function
fi is defined by system (2), then its value on the tuple (d1, . . . , dki) is equal to a
value of expression

[xi1 := d1, . . . , xiki
:= dki

]ei (3)

A value of expression (3) is computed as follows.

– If (3) is a constant, then its value is equal to this constant.
– If (3) has the form

u1 ? u2 : u3 (4)

then at first a value of u1 is computed, and
• if a value of u1 is undefined, then a value of (4) is undefined,
• if a value of u1 is equal to 1, then a value of u2 is computed, and
∗ if a value of u2 is undefined, then a value of (4) also is undefined,
∗ otherwise a value of u2 is equal by definition to a value of (4)

• if a value of u1 is not equal to 1, then a value of u3 is computed, and
∗ if a value of u3 is undefined, then a value of (4) is undefined,
∗ otherwise a value of u3 is equal by definition to a value of (4)
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– If (3) has the form
f(u1, . . . , um) (5)

where f is a primary FS, which is not equal to if_then_else, then values
of u1, . . . , um are computed, and after this a value of function f on the tuple
of values of u1, . . . , um is computed. By definition, this value is equal to a
value of (5).
If
• either one of values of u1, . . . , um is undefined,
• or a value of f on a tuple of values of u1, . . ., um is undefined

then a value of (5) is undefined.
– If (3) has the form

fj(u1, . . . , ukj )

where fj is a FS, which is a name of a function defined by system (2), then
its value is equal to a value of expression

[xj1 := u1, . . . , xjkj := ukj ]ej (6)

which is computed by the same way as a value of (3) is computed.

If the above process is not terminated, then a value of fi on the tuple (d1, . . . , dki
)

is undefined.

3 Graph models of functional programs

3.1 Graph models of FPs

For every FP (2) we can construct a graph which is called a graph model
(GM) of FP (2), in which

– every node has a label which is equal to some subexpression of one of the
expressions e1, . . . , en, and

– every edge has a label of one of the following types:
1. a condition: a label of this type has the form

ϕ ? or ¬ϕ ?

where ϕ
• either is some subexpression of one of expressions from (2),
• or is constant 1.

2. a substitution: a label of this type has the form

[x1 := u1, . . . , xm := um]

where
• x1, . . . , xm are distinct variables which have occurrences in (2), and
• u1, . . . , um are some subexpressions of one of expressions from (2).
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3. a link to a subexpression: a label of this type has the form

(i)

and has the following meaning: for every edge with a label (i)
• label of a start node of this edge has the form f(u1, . . . , um), and
• label of an end node of this edge is ui.

GM of FP (2) is defined as follows:

– A set of its nodes is equal to the set of subexpressions of expressions from
(2). A label of every node is equal to the corresponding subexpression.

– For every equation fi(xi1, . . . , xiki
) = ei from (2), GM has an edge with label

1? from a node with the label fi(xi1, . . . , xiki
) to a node with the label ei.

– For every node N with a label of the form

e1 ? e2 : e3

GM contains
• an edge from N to a node with the label e2, and a label of this edge is
e1?, and
• an edge from N to a node with the label e3, and a label of this edge is
¬e1?.

– For every node N with a label of the form

fi(u1, . . . , uki
)

where fi is a name of some function which is defined by FP (2), GM contains
an edge from N to a node with the label fi(xi1, . . . , xiki

), and label of this
edge has the form

[xi1 := u1, . . . , xiki := uki ]

– For
• every node N with a label of the form

f(u1, . . . , um) (7)

where f ∈ Fun+, and
• every i = 1, . . . ,m

GM contains an edge from N to a node with the label ui, and a label of this
edge is (i).

3.2 Simplification of GMs

GMs of FPs can be transformed to equivalent (in certain sense) GMs. The trans-
formations consists of a removing of edges and nodes, as following. Let a GM
has a node N , such that a label of every edge incoming in N and every edge
outgoing from N has a type “a condition”. In this case
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�� ��fib(p)

����1

����+

�� ��fib(p− 1)

�� ��fib(p− 2)

6
(1)

?

(2)

�
(p ≤ 2)?

-
(p > 2)?

�
?

[p := p− 1]

�
6

[p := p− 2]

Fig. 1: A simplified GM of FP fib.

– node N can be removed, and
– every pair of edges of the form

N1
-ϕ?
N, N -ϕ2?

N2

can be changed on one edge of the form

N1
-(ϕ1∧ϕ2)?
N2

This operation can be made several times.
Also it is possible

– to change labels of nodes of the form (7), where f is a primary FS, on labels
of the form f
(i.e. not write a list of arguments after symbol f)

– to remove every edge with a label of the form (i), and to remove a node
which is an end of this edge.

A GM, which is a result of such transformations, is called a simplification
of an original GM.

3.3 Examples of GMs of FPs

Consider a FP, which defines a Fibonacci function

fib(p) = (p ≤ 2)?1 : fib(p− 1) + fib(p− 2)

where the set of values, associated with variable p, is the set of natural numbers
(1, 2, . . .).

A simplified GM, which corresponds to this FP, has the form depicted in the
figure 1.
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�� ��f(x, i, a, b)

�� ��f(q, 1, 1, 1)

�� ��fib2(q)

�� ��f(x, i + 1, b, a + b)

����a

����b

����+

(i ≥ x)?
??

(3)
?
(4) (4)(3)

?

?

A
A
AK

�
�
��

(1) (2)

1?

[x := q, i := 1, a := 1, b := 1]

-

��

��

��
?

[i := i + 1, a := b, b := a + b]

(i < x)?

Fig. 2: A simplified GM of a FP, which defines function fib2.

Consider other FP, which also defines a Fibonacci function, but computes
it by the method ”from bottom to top” (the previous FP computes Fibonacci
function by the method ”from top to bottom”):

fib2(q) = f(q, 1, 1, 1)

f(x, i, a, b) = (i < x)?f(x, i+ 1, b, a+ b) : a

where all variables range over the set of integer numbers.
A simplified GM, which corresponds to this FP, has the form, which is de-

picted in figure 2.

4 A method of proving of equality of functions defined
by FPs

Assume that two FP are given, and

– first FP defines functions f1, . . . , fn, and
– second FP defines functions g1, . . . , gm.
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If we would like to prove that functions f1 and g1, which are defined by these
FPs, are equal (under a condition that arguments of these functions satisfy
certain relation which is called a precondition), then it is possible to prove as
follows.

At first we rename variables in these FPs, such that every variable has an
occurrence in only one equation in these FPs. Second, we construct GMs of these
FPs.

Theorem.
Let there is a set of arcs, which connect nodes of first GM with nodes of

second GM, and satisfy the following conditions.

1. Every arc has a label, which is a boolean-valued expression.
2. There is an arc,

– which connects a node in first GM with a label of the form f1(x11, . . . , x1n1
),

with a node in second GM with a label of the form g1(y11, . . . , y1m1
), and

– a label of which is equal to a precondition.
3. If

– one GM has an edge with label θ from a node v1 to a node v′1,
– v2 is a node of other GM
– node v1 is connected with a node v2 by an arc with a label α,

then node v′1 is connected with a node v2 by an arc with a label α′, such that
the following implication holds:

α→ θα′

4. If
– one GM has an edge with a label ϕ? from a node v1 to a node v′1,
– v2 is a node of other GM
– node v1 is connected with node v2 by an arc with label α,

then node v′1 is connected with node v2 by an arc with label α′, such that the
following implication holds:

(α ∧ ϕ)→ α′

5. If
– node v1 of one GM is connected with a node v2 of other GM by an arc

with a label α,
– v1 and v2 have no outgoing edges
– labels of v1 and v2 are expressions e1 and e2 respectively

then the following implication holds:

α→ (e1 = e2) (8)

6. If
– node v1 of one GM is connected with a node v2 of other GM by an arc

with a label α,
– label v1 is a primary FS
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then in this case
– label v2 is the same FS,
– let
• a set of ends of edges outgoing from v1 has the form

{v11, . . . , v1n}

and for every i = 1, . . . , n node v1 is connected with node v1i by an
edge with a label (i)

• a set of ends of edges outgoing from v2 has the form

{v21, . . . , v2n}

and for every i = 1, . . . , n node v2 is connected with node v2i by an
edge with a label (i),

then for every i = 1, . . . , n node v1i is connected with a node v2i by an
arc with a label αi, such that the following implication holds:

α→ (α1 ∧ . . . ∧ αn)

7. If
– one GM has
• an edge with a label θ from a node v1 to a node v′1,
• there are edges outgoing from v1 such that
∗ labels of these edges are (1), . . . , (n), and
∗ ends of these edges are nodes v11, . . . , v1n respectively,

• there are edges outgoing from a node v′1 such that
∗ labels of these nodes are (1), . . . , (n), and
∗ ends of these edges are v′11, . . . , v

′
1n respectively

– v2 is another node of second GM, such that for every i = 1, . . . , n there
is an arc which connects v2 with v1i, and a label of this arc is αi

then for every i = 1, . . . , n node v2 is connected with a node v′1i by an arc
with a label α′

i, such that the following implication is hold:

αi → θα′
i

Then, if both FPs terminate their computation on every tuple of values of
arguments which satisfy a precondition, then values of functions f1 and g1 on
these tuples of values of arguments are equal.

Proof.
If an arc with label α connects nodes with labels e1 and e2 respectively, then

we shall interprete this arc as a proposition that the following implication holds:

α→ (e1 = e2) (9)

According to this interpretation, an arc which connects



156 Andrew M. Mironov

– a node of first GM with a label of the form

f1(x11, . . . , x1n1)

and

– a node of second GM with a label of the form

g1(y11, . . . , y1m1
)

(such arc exists by assumption 2 of a condition of the theorem)

represents a goal proposition.

For proving that goal proposition is true for every evaluation ξ0, we

– assume that a condition of this implication holds on this evaluation, and

– prove that a conclusion of this implication also holds on this evaluation.

In this case truth of a condition of implication (9) means that evaluation
ξ0 is a list of values of arguments of the FP, which satisfies a precondition. By
assumption, functioning of every FP on this list terminates. This functioning
can be represented as a finite tree,

– nodes of which correspond to nodes of GM (several nodes of the tree can
correspond to one node of the GM), and are labeled by expressions of the
form ξe, where

• e is an expression, which is a label of a corresponding node GM, and

• ξ is a substitution, which associates every variable from e with a value.

– edges of which correspond to edges of the GM, and have the same labels as
corresponded edges of the GM.

Roots of these trees correspond to nodes of the GMs with labels f1(x11, . . . , x1n1
)

and g1(y11, . . . , y1m1
).

If

– node w1 of first tree corresponds to node v1 of first GM,

– node w2 of second tree corresponds to node v2 of second GM, and

– among arcs mentioned in the theorem, there is an arc which connects v1 and
v2 with a label α,

then we draw an arc with the same label α, which connects w1 and w2.

The condition of the theorem and a definition of functioning of a FP imply
the following propositions.

– If

• there is an arc with a label α, which connects a node of first tree with a
node of other tree, and

• labels of these nodes have the form ξ1e1 and ξ2e2 respectively
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then expression α holds on evaluation

ξ1 ∪ ξ2
which is equal to ξ1 on variables occurring in e1, and to ξ2 on variables
occurring in e2 (this can be proved by induction, where a base of induction
is an assumption that the precondition holds on evaluation ξ0, and inductive
steps can be founded by the corresponding assumptions in the theorem).

– Every terminal node of one of the trees is connected by an arc with a terminal
node of other tree.

Because every arc, which connects terminal nodes, satisfies condition (8), in
which

– α is a label of this arc, and
– e1 and e2 are labels of nodes of a GM, which corresponds to these terminal

nodes of the trees

then (8) implies the implication

(ξ1 ∪ ξ2)α→ (ξ1e1 = ξ2e2)

where ξ1e1 and ξ2e2 are labels of the above terminal nodes. As it was stated
above, expression α holds on the evaluation ξ1 ∪ ξ2. Consecuently, values of the
expressions ξ1e1 and ξ2e2 (which are labels of terminal nodes) are equal.

Moving from terminal nodes to root nodes, we can use the above propostions
for proving that for every pair of nodes which are connected by an arc, values of
expressions, which are labels of these nodes, are equal.

Because root nodes of these trees also are connected by an arc, then values
of expressions, which are labels of these nodes, are equal.

The proposed method can be modified in such a manner that for proving a
equality of functions defined by different FPs it is necessary to define not all
arcs mentioned in the theorem, but only several of them (omitted arcs can be
generated automatically). We shall not describe in detail the modified method.
We only note that for proving of equality of functions which are defined by FPs
in section 3.3, it is enough to define only the following arcs:

1. an edge with a label p = q, which connects
– a node with a label fib(p) of first GM, and
– a node with a label fib2(q) of second GM

2. an edge with a label (p = x) ∧ (i ≤ x), which connects
– a node with a label fib(p) of first GM, and
– a node with a label f(x, i, a, b) of second GM

3. an edge with a label p = i, which connects
– a node with a label fib(p) of first GM, and
– a node with a label a of second GM

4. an edge with a label p = i+ 1, which connects
– a node with a label fib(p) of first GM, and
– a node with a label b of second GM.
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Abstract. This paper explores some of the performance-enhancing fea-
tures of supercompilation in the context of the Reduceron — a special-
purpose graph-reduction machine. Two small examples are discussed in
detail, highlighting areas where the two technologies interact. A strategy
is introduced for countering a situation where supercompilation adversely
affects Reduceron execution time. Performance results and other metrics
are presented across a range of nineteen benchmarks highlighting the
synergistic properties of supercompilation on the Reduceron. This paper
represents work in progress.

1 Introduction

Functional programming is a distinctive paradigm that has scope for exploiting
non-standard technologies at every stage of computation. Supercompilation and
the Reduceron are two such technologies.

Supercompilation [1,2] is a metaprogramming technique that, at compile-time,
evaluates (drives) programs until an unknown is required and then proceeds by
case analysis (residuates). Among other benefits, it can remove intermediate data
structures and specialise higher order functions, with corresponding performance
gains at execution time.

The Reduceron is an FPGA-based soft processor for executing lazy functional
programs by graph reduction [3,4]. The special-purpose processor can perform
in parallel many of the steps required for each reduction, whereas conventional
architectures need to perform these steps serially.

Does a combination of these technologies lead to further improvements in perfor-
mance? Are these techniques conflicting, compatible or even mutually beneficial?
In this paper, we discuss how the two may interact and present preliminary find-
ings from a prototype supercompiler for the Reduceron source language.

2 Our Source Language

Our source language [5] is close to subsets of both Haskell 98 [6] and Clean [7]. It
supports algebraic data types, uniform pattern matching by construction, local
variable bindings, and various primitive integer operations.
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prog := f vs = x

exp := v (variables)

| c (constructors)

| f (functions)

| n (integers)

| x xs (applications)

| case x of c vs → x

| let v = x in y

Fig. 1. Abstract syntax for our source language.

Abstract syntax for our source language is given in Figure 1. In addition to the
annotated symbols, x and y range over expressions. Overlining and pluralisa-
tion indicate sequences of productions. For example vs represents a sequence of
variable names. All programs contain a function named main of arity zero.

Listing 1 shows an encoding of a program in our source language. This program
(somewhat inefficiently) doubles each element in a range, calculates the sum and
prints the result.

The basic compiler (before the introduction of supercompilation) first reduces
all pattern matching to combinations of one-level case distinctions. A case-
elimination phase then translates algebraic data constructors and case expres-
sions to functions and function applications respectively, using a variation of the
Scott encoding, e.g. after case elimination our range function is as displayed in
Listing 2. In every function body, a bottom-up traversal inlines saturated ap-
plications of non-primitive functions. Finally, the compiler generates a compact
encoding of function body.

The encoding phase must take into account the design parameters of the Reduc-
eron. Encoded forms of function bodies are constrained by limits on the size of
the top-level spine, the number and size of nested applications, and the number
of case-table arguments in an application. Encoded bodies are split if necessary,
with the introduction of auxiliary combinators.

It should be stressed that the compiler is not generating circuitry for the FPGA.
Rather, it is generating a representation of the program, suitable for execution
on a template instantiation machine [8]. In this case, the template instantiation
machine, the Reduceron, has been realised on an FPGA.



Supercompilation and the Reduceron 161

Listing 1. An example program, in our source language.

{

foldl f z xs = case xs of {

Nil -> z;

Cons y ys -> foldl f (f z y) ys;

};

map f xs = case xs of {

Nil -> Nil;

Cons y ys -> Cons (f y) (map f ys);

};

plus x y = (+) x y;

sum = foldl plus 0;

double x = (+) x x;

sumDouble xs = sum (map double xs);

range x y = case (<=) x y of {

True -> Cons x (range ((+) x 1) y);

False -> Nil;

};

main = emitInt (sumDouble (range 0 10000)) 0;

}

3 The Reduceron Architecture

The Reduceron features broad memory channels to ‘widen the von Neumann
bottleneck.’ [3] Many of the operations required to perform each graph reduction
step are simultaneously performed in a single clock cycle.

Instantiation of a function body takes dn/2e clock ticks, where n is the number of
applications in the body. Establishing the environment for function applications,
updating the heap-graph to prevent repeated evaluations and applying primitive
functions each take just one clock cycle. Dynamically maintained sharing infor-
mation allows the Reduceron to avoid a high proportion of redundant updates
where no sharing can occur. Constructor reductions (selection of the appropriate
case alternative function from a case table) take place in zero clock cycles.

Listing 3 shows the evaluation of range 0 10 to head normal form. Each re-
duction step is annotated with the operation that is being performed and how
many cycles are required. This example takes four clock cycles, under the scheme
outlined so far.
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Listing 2. range function after case elimination.

range x y = (<=) x y [range#1,range #2] x y;

range#1 alts x y = Nil;

range#2 alts x y = Cons x (range ((+) x 1) y);

Listing 3. Reduction of range 0 10 without PRS.

range 0 10

= { Instantiate function body (1 cycle) }

(<=) 0 10 [range#1,range #2] 0 10

= { Primitive application (1 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range#2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

4 Primitive Redex Speculation

If primitive applications in body have fully evaluated arguments at instantia-
tion time, the Reduceron can evaluate them speculatively during instantiation.
Primitive redexes need not be constructed in memory, nor fetched again when
needed. Even if the result of a primitive redex is not needed, reducing it is no
more costly than constructing it.

Once again consider the reduction of the expression range 0 10, now with prim-
itive redex speculation (PRS) enabled (Listing 4). One clock cycle is avoided for
the comparison. Further clock cycles will be saved if the tail of the result is
needed, as the addition to form the lower bound of the range has also been
speculatively evaluated.

The beneficial effect of PRS is quite marked. For the example program in List-
ing 1, the Reduceron takes 230,029 clock cycles to execute without PRS. With
PRS enabled the Reduceron only takes 150,024 clock cycles, a 35% reduction.

However, the number of PRS reductions in each instantiation is limited by a
Reduceron design parameter. Currently, this limit is two.

5 Benchmark Programs

A selection of nineteen programs are used to test and benchmark the Reduc-
eron platform. These programs range from small, toy examples that demon-
strate specific effects, such as the sum– series, to significant computations like
Knuthbendix.
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Listing 4. Reduction of range 0 10 with PRS.

range 0 10

= { Instantiate function body (1 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range#2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range 1 10)

These programs are described below in terms of their purpose, characteristics and
code size. Line counts are for sources including all required auxiliary functions.

Adjoxo An adjudicator for the game noughts and crosses, a.k.a. tic-tac-toe.
The input is a game position, and the output is one of the three values —
Win, Draw or Loss — indicating the outcome with best play for each of the
players whose turn it might be. The method is the usual minimax recursive
evaluation of completed game trees. (106 lines)

Braun A Braun tree is a balanced binary tree offering an efficient yet simple
implementation of flexible arrays. The program tests the property that con-
verting a list to a Braun tree and back again is equivalent to the identity
function. (51 lines)

Cichelli Finds a perfect hash function for Haskell keywords [9]. It uses a back-
tracking search to find an assignment of natural-number values to each letter
that starts or ends a keyword such that hash values for keywords, computed
as start-value + end-value + length, are unique and occupy a small integer
range without gaps. (200 lines)

Clausify Puts propositional formulae in clausal form using a multi-stage trans-
formation of formula-trees [9]. Almost a purely symbolic application, with
hardly any arithmetic. (131 lines)

Fib Computes the Nth number in the fibonacci sequence using a simple but
naive doubly-recursive function definition. A purely arithmetic program in-
volving no data structures at all. (10 lines)

Knuthbendix The Knuth-Bendix completion method tries to derive a con-
vergent term-rewriting system for a given equational theory and symbol-
weighting scheme. It is a typical symbolic computing application from com-
puter algebra. The example input used in the program gives group-theoretic
axioms from which ten rewriting rules are derived. (533 lines)

MSS Computes the maximum segment sum of a list of integers. Works by
dividing the input list into all sub-lists, computing the sum of each, and
returning the maximum. (47 lines)

Mate Solves chess end-game problems of the form “P to move and mate in
N” [9]. The method is brute-force search in an explicit AND-OR game tree
developing the given position to depth 2N − 1. Boards are represented by
a square-piece assocation list for each player, where squares are coded as
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rank-file numeric pairs, so there is a fair amount of primitive arithmetic and
comparison. (393 lines)

OrdList Checks the property that insertion of a number into an ordered list
of numbers results in a list that is still ordered. Numbers are represented as
Peano numerals, so this is a purely symbolic program. (46 lines)

Parts Computes a celebrated number-theoretic function, the number of parti-
tions of n, where a partition is a bag of positive integers that sum to n. There
is a sophisticated closed formula for this number, but the method here is to
list and count partitions explicitly. (54 lines)

PermSort Enumerates the permutations of a list of numbers, and returns the
first ordered permutation. (39 lines)

Queens Solves a programming problem made famous by Wirth: place N queens
on an N × N chess board so that no two queens occupy a common rank,
file or diagonal [9]. The solution involves backtracking, list processing and
an inner recursive loop that tests the safety of each candidate position for a
new queen by primitive arithmetic comparisons with the coded positions of
queens already in place. (47 lines)

Queens2 A purely symbolic solution to the N -queens problem. Represents the
board as a list of lists. Places a queen on one row at a time, maintaining a
grid of threatened squares, and backtracks if a queen cannot be placed. (62
lines)

Sudoku A Sudoku solver due to Richard Bird [10]. Fills the blank cells on a
Sudoku board with valid digits, pruning many possible choices that cannot
possibly lead to a solution. (209 lines)

Taut A tautology checking program based on an example from Hutton’s book.
The method is a brute-force evaluation for all possible boolean assignments
to variables. (95 lines)

While A structural operational semantics of Nielson and Nielson’s While lan-
guage [11] applied to a program that computes the number of divisors of
given integer. (96 lines)

sumDouble Computes
∑10000

i=0 2i by generating the list of the numbers between
0 and 10,000, doubling each element and then computing the sum using
the higher-order function, foldl. Contains intermediate data structures and
primitive operations. The program in Listing 1. (20 lines)

sumSquares Computes
∑100

i=0 i
2. This is done in a similar fashion to the previ-

ous example. The square function consists of replicating its input n, n times
and summing the result using foldl. Contains intermediate data structures,
primitive operations and nested loops. (23 lines)

sumSumEnum Computes
∑100

i=0

∑i
j=0 j by generating the list of the numbers

between 0 and 100, mapping a function, sumEnum, over the list and summing
the resulting list. The sumEnum function sums the numbers between 0 and
its input. Contains intermediate data structures, primitive operations and
nested loops. (22 lines)
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Listing 5. A supercompiled form of sumDouble.

sumDouble = sumDoubleAc 0;

sumDoubleAc z xs = xs [sumDoubleAc #1, sumDoubleAc #2] z;

sumDoubleAc #1 y ys alts z = sumDoubleAc ((+) z ((+) y y)) ys;

sumDoubleAc #2 alts z = z;

6 A Synergistic Effect of Supercompilation

The basic Reduceron compiler currently performs very little optimisation. We
are developing a supercompiler targeted at the Reduceron platform. The starting
point for our current prototype was a previous positive supercompiler for a core
functional language by Mitchell [12].

Mitchell’s design inserted a supercompilation phase between core generation and
compilation by the optimising Glasgow Haskell Compiler (GHC). In all but one
of the published benchmarks, Mitchell’s supercompiler demonstrated at least
equal and often significantly improved performance when compared with GHC
alone.

One reason for the improvement is that supercompilation fuses away intermedi-
ate data structures. In its original form, the function sumDouble (Listing 1) maps
double over its list input, only to apply foldl plus to the newly constructed
list to calculate the sum. The supercompiler fuses this composition to a residual
function that does not produce the intermediate list but performs the double

operation as it sums. For both conventional implementations and the Reduceron,
fewer reductions are needed to construct and deconstruct data structures.

Some effects of supercompilation particularly benefit the features of the Reduc-
eron architecture. For example, the program in Listing 1 cannot, as it stands,
benefit from PRS during the sum function because the primitive addition is
not apparent in the body of the higher-order foldl. However, if supercompiled,
foldl plus is specialised to a first-order equivalent. A considerable reduction
in clock cycles is obtained because PRS now applies.

The original program evaluates 20,003 expressions by PRS, compared with the
29,995 for the supercompiled program. While it is possible in some cases, for
this example, no more primitive reductions were performed overall than we per-
formed originally. A further performance gain achieved on top of the fusion
effects. Following supercompilation, the Reduceron takes 159,970 clock cycles to
execute the program in Listing 1 without PRS and only 39,996 clock cycles with
PRS. Compared with the original program executed without PRS, this is a 87%
performance increase.

Listing 5 shows the combined effects of supercompilation fusion and specialisa-
tion on sumDouble. In sumDoubleAc#1, the dependency of the outer addition
on the inner one means that PRS requires an extra clock cycle to evaluate the
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Listing 6. Original and supercompiled piece safety in the n-queens problem.

and x y = case x of { True -> y; False -> False };

safe x d qs = case qs of {

Nil -> True;

Cons q l ->

and ((/=) x q) (

and ((/=) x ((+) q d)) (

and ((/=) x ((-) q d)) (

safe x ((+) d 1) l)));

};

safeSC x d qs = case qs of {

Nil -> True;

Cons q l ->

case (/=) x q of {

True ->

case (/=) x ((+) q d) of {

True ->

case (/=) x ((-) q d) of {

True -> safeSC x ((+) d 1) l;

False -> False

};

False -> False

};

False -> False

}

};

expression fully. However, overall cycles are still saved in comparison with the
reduction of a separate function application.

7 A Potentially Obstructing Effect of Supercompilation

There are circumstances where the process of supercompilation might impede
PRS. Consider Listing 6, an extract from the Queens example. The function
safe computes whether it is ‘safe’ to place a queen in rank x, at a distance of
d files away from the queens currently placed on the board. These queens are
specified by their rank positions in the list qs.

Listing 7 shows the original and supercompiled definitions following case elimina-
tion and inlining. Notice that in safe, all of the primitive reducible expressions
are in one case alternative. On the other hand, in the supercompiled version,
safeSC, the expressions are split over separate case alternatives, and therefore,
instantiations after Scott encoding.



Supercompilation and the Reduceron 167

Listing 7. Listing 6 after case elimination.

and v0 v1 = v0 [and#1,and #2] v1;

and#1 v0 v1 = False;

and#2 v0 v1 = v1;

safe v0 v1 v2 = v2 [safe#1,safe #2] v0 v1;

safe#1 v0 v1 v2 v3 v4 = let {

v5 = (+) v4 1;

v6 = (/=) v3 ((-) v0 v4);

v7 = (/=) v3 ((+) v0 v4);

v8 = (/=) v3 v0

} in v8 [and#1,and#2]

(v7 [and#1,and#2]

(v6 [and#1,and#2]

(v1 [safe#1,safe #2] v3 v5)));

safe#2 v0 v1 v2 = True;

safeSC v0 v1 v2 = v2 [safeSC#7,safeSC #8] v0 v1;

safeSC #1 v0 v1 v2 v3 = False;

safeSC #2 v0 v1 v2 v3

= let { v4 = (+) v2 1 } in v3 [safeSC#7,safeSC #8] v1 v4;

safeSC #3 v0 v1 v2 v3 v4 = False;

safeSC #4 v0 v1 v2 v3 v4

= (/=) v1 ((-) v2 v3) [safeSC#1,safeSC #2] v1 v3 v4;

safeSC #5 v0 v1 v2 v3 v4 = False;

safeSC #6 v0 v1 v2 v3 v4

= (/=) v1 ((+) v2 v3) [safeSC#3,safeSC #4] v1 v2 v3 v4;

safeSC #7 v0 v1 v2 v3 v4

= (/=) v3 v0 [safeSC#5,safeSC #6] v3 v0 v4 v1;

safeSC #8 v0 v1 v2 = True;

This leads to a situation where the execution of the original can speculatively
evaluate a number of expressions simultaneously, whereas safeSC evaluates them
separately at each function body instantiation.

To alleviate this issue, primitive expressions can be lifted as far as their variables
are bound. The lifting process can take into account the maximum number of
PRS reductions at instantiation and only lift to where there is spare capacity.

However, if we naively lift all primitive redex expressions, we may cause duplicate
computation to occur. The supercompiler is permitted to duplicate code as long
as it does not duplicate computation, under lazy evaluation. For example, our
supercompiler may replicate bindings from outside a case expression down each
case alternative. As only one alternative is evaluated, only one of the duplicate
bindings will be evaluated under both lazy and speculative evaluation.
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Original Supercompiled SC + PRS lift

a b c d e f
(No PRS) (PRS) (No PRS) (PRS) (No PRS) (PRS)

Adjoxo 1.000 0.799 0.866 0.671 0.707 0.405
Braun 1.000 1.000 0.769 0.769 0.769 0.769
Chichelli 1.000 0.990 1.000 0.990 1.013 0.998
Clausify 1.000 1.000 1.050 1.050 1.051 0.951
Fib 1.000 0.445 1.000 0.445 0.907 0.353
KnuthBendix 1.000 0.900 0.896 0.833 0.876 0.779
MSS 1.000 0.864 0.995 0.858 0.997 0.861
Mate 1.000 0.867 0.912 0.838 0.916 0.827
OrdList 1.000 1.000 0.662 0.662 0.678 0.678
Parts 1.000 0.746 0.933 0.679 1.029 0.753
PermSort 1.000 0.962 0.861 0.861 0.759 0.727
Queens 1.000 0.421 0.850 0.489 0.811 0.325
Queens2 1.000 0.996 0.989 0.985 0.966 0.961
Sudoku 1.000 0.936 0.955 0.892 0.922 0.815
Taut 1.000 1.004 0.700 0.700 0.944 0.859
While 1.000 0.947 0.996 0.942 1.047 1.005
sumDouble 1.000 0.652 0.695 0.174 0.739 0.130
sumSquares 1.000 0.541 0.726 0.206 0.793 0.205
sumSumEnum 1.000 0.481 0.847 0.455 0.960 0.454

Geometric Mean 1.000 0.788 0.871 0.647 0.881 0.598

Table 1. Execution time as multiples of that for pipeline a, the program before
supercompilation executed without PRS. (Best results are in bold.)

However, if replicated primitive redexes are lifted above a case distinction, they
may be evaluated speculatively, taking away capacity that other primitive ex-
pressions could have used. A solution is to detect these replicated expressions
and merge them into a single binding.

Our original supercompiler worsened PRS-enabled results for Queens by 16%.
With the primitive redex lifting strategy applied, supercompilation improves
results by 33%.

8 Performance Results

8.1 Compared to without PRS and Supercompilation

Each example described in Section 5, is compiled with six variations of compi-
lation pipeline. These are; a) normal compilation, b) normal compilation with
PRS, c) supercompilation and normal compilation, d) supercompilation and nor-
mal compilation with PRS, e) supercompilation, primitive redex lift and normal
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compilation, f) supercompilation, primitive redex lift and normal compilation
with PRS.

The compiled output is executed on a Reduceron simulator. The simulator re-
turns various profiling measurements such as total clock cycles, the number of
PRS evaluated expressions and the proportion of time spent on individual func-
tions and reduction operations. Table 1 presents the performance of our test
programs relative to that of pipeline a, the original program executed without
PRS.

PRS Only — Primitive redex speculation (pipeline b) shows an average perfor-
mance increase of 21%. All but four of the examples achieve some improvement.
The only example that suffers under PRS is Taut, likely due to the structure of
the program. The drop in performance is only very slight, however.

Supercompilation Only — Supercompilation (pipeline c) shows an average per-
formance boost of 13%. Only three examples do not benefit from supercompi-
lation. While we do not expect much improvement on Fib due to its simple
structure, the highly symbolic programs Chichelli and Clausify might have
shown some fusion.

Supercompilation and PRS — The combination of PRS and supercompilation
(pipeline d) largely gives results as expected (PRS factor × supercompilation fac-
tor) with a few notable exceptions. Adjoxo, Parts, sumDouble and sumSquares

all show better than expected performance, mainly for the reasons described
in Section 6. However, Queens and sumSumEnum show considerably worse than
expected performance, likely for the reasons outlined in Section 7.

Supercompilation, Lifting and PRS — The results of PRS, supercompilation and
primitive redex lifting (pipeline f) indicate that this strategy is effective. Every
program except for While performs better than the original program without
PRS. However, Taut performs significantly worse than under our original super-
compiler strategy. Across all our test programs, this strategy gives an average
performance boost of 40%.

8.2 Compared to without Supercompilation on a PRS-enabled
Platform

Table 2 gives another view on the impact of the supercompiler. It compares
the number of Reduceron combinators produced (size), time taken to execute
(cycles), number of case tables evaluated (cases) and the proportion of primitive
operations performed by PRS. These are recorded for pipeline f and shown as
multiples of the results for pipeline b, to the original program executed under
PRS.
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Relative Primitives by PRS

Size Cycles Cases Original Residual Increase

Adjoxo 1.500 0.507 0.692 16.3% 87.0% +81.3%
Braun 2.526 0.769 0.810 99.2% 100.0% +0.8%
Chichelli 1.494 1.008 0.989 2.7% 2.6% -5.2%
Clausify 5.879 0.951 0.829 0.0% 94.0% + ∞
Fib 1.588 0.792 1.000 77.9% 77.9% 0.0%
KnuthBendix 2.508 0.866 0.855 63.8% 72.4% +11.8%
MSS 1.920 0.996 0.991 0.0% 0.0% -0.4%
Mate 2.423 0.954 0.918 54.8% 55.1% +0.6%
OrdList 3.887 0.678 0.771 0.0% 0.0% 0.0%
Parts 1.733 1.009 0.983 38.8% 56.0% +30.8%
PermSort 2.000 0.756 0.853 100.0% 41.8% -139.2%
Queens 2.535 0.773 0.988 99.5% 85.4% -16.5%
Queens2 2.068 0.966 0.947 4.0% 4.0% 0.0%
Sudoku 1.793 0.870 0.911 30.3% 56.1% +45.9%
Taut 2.057 0.856 0.718 0.0% 99.9% + ∞
While 3.030 1.062 0.989 60.2% 55.7% -8.1%
sumDouble 0.450 0.200 0.333 50.0% 100.0% +50.0%
sumSquares 0.900 0.378 0.494 66.2% 98.7% +32.9%
sumSumEnum 1.435 0.943 0.494 66.2% 66.9% +0.9%

Geometric Mean 1.936 0.759 0.790 7.3% 21.7%

Table 2. Various metrics for the benchmark programs. Relative values are
against the original program executed with PRS (pipeline b).

As would be expected, supercompilation can greatly increase the size of the
compiled program. There does not seem to be a relationship between relative
execution time performance and relative code size. A reduction in the number of
cases table evaluated would likely indicate that fusion has taken place, as fewer
data structures have been consumed.

In three cases, pipeline f still produces programs that perform worse than under
PRS alone (pipeline b). In comparison to the gains made by other programs,
these are only very small performance loses. The reason for these loses is cur-
rently unclear. Both for Chichelli and for While, the proportion of primitive
operations performed by PRS has actually fallen. It is currently unclear why
Parts performs worse when it has a large increase in the number of PRS candi-
dates and a small amount of fusion.

Despite these results, the current prototype of our supercompiler gives a geo-
metric mean speed-up of 24% for programs executed under PRS.
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9 Conclusions and Future Work

The sumDouble example was chosen to demonstrate the benefits of both PRS and
supercompilation. However, we did not see the full magnitude of the combined
effect of the two technologies.

Other examples, such as Queens, did not benefit from supercompilation. This
led to the development of the primitive redex lifting strategy that has largely
permitted these examples to benefit from the same effects as sumDouble. This
strategy does not seem to produce benefits for all results. Further investigation
is required to discover why some results still do not improve and a small number
get worse.

Still, based on the evidence detailed in this paper, it would appear that PRS and
supercompilation can be synergistic, once certain primitive redexes are relocated
to maximise design constraints.

There is further scope to exploit the Reduceron design characteristics with the
supercompiler. A final inlining phase is required after supercompilation to re-
duce instantiations at run-time. The current method for selecting candidates for
inlining is simplistic. Further performance gains can be made by an improved
inlining strategy that considers the constraints on function bodies imposed by
the design parameters of the Reduceron.

Future designs of the Reduceron will also permit even more primitive redexes
to be speculatively evaluated in parallel. This will likely enable even further
performance gains from supercompilation targeted at the Reduceron platform.
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Abstract. This paper is about a puzzle to be solved in three program-
ming paradigms: logic, functional and imperative. It can be considered
as a case study of algorithm inversion, since we start with logic algo-
rithm, that answers the question “Is balancing M times sufficient for
detecting a single fake in a set of coins?”, and finishes with imperative
algorithm, that effectively computes the minimal number of balancing
that is sufficient for detection the fake. Functional paradigm is used for
developing an intermediate functional algorithm that also computes the
minimal number of balancing, but inefficiently, while the efficient imper-
ative algorithm is a “lazy memoization” of the functional one.

1 Introduction

1.1 A Puzzle

Let us start with the following fake-coin puzzle:

A set of 15 coins consists of 14 valid coins and a false one; all valid coins
have equal weights, while the false coin has a different weight, one of
the valid coins is marked but all other coins (including the fake) are
unmarked. Is it possible to identify the fake coin using a balance at most
3 times?

Of course, there is nothing to program in this puzzle: just to solve it “manually”
(sorry, mentally) and write a program that outputs the appropriate answer “Yes”
or “No”. But the following parameterized version of the puzzle is a straightfor-
ward generalization of the above one:

Write a program that inputs a number N > 0 of coins under question
and a number W ≥ 0 of marked valid coins (N ≥ W ), and outputs the
least number of balancing M that is always sufficient for detecting the
unique fake among N coins under question with aid of W valid ones.
(Assume that all valid coins have one and the same weight while the
false coin has a different weight.)

? Research is supported by grant of Russian Basic Research Foundation 08-01-00899-a.
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We will discuss how to solve this parameterized puzzles in logic, functional
and imperative programming in the further sections. But first we would like
to provide a short remark about programming paradigms in general and their
relations to programming languages.

1.2 What are “Programming Paradigms”?

Robert Floyd was the first who had explicitly used the concept of “Program-
ming Paradigm” in his Turing Award Lecture in 1978 [1]. He referred to Thomas
Kuhn’s well-known book [2], published just 8 years before. According to T. Kuhn,
a paradigm is a method, an approach to a problem formulation (statement) and
the ways to solve the problem. R. Floyd had a similar understanding of pro-
gramming paradigms. In particular, he advocated that a programming language
should support one or several of programming paradigms, and wrote: “To the
designer of programming languages, I say: unless you can support the paradigms
I use when I program, or at least support my extending your language into one
that does support my programming methods, I don’t need your shiny new lan-
guages”.

At present the number of essentially different paradigms of programming is
already several dozens (see, for example, the list of “programming paradigms”
at http://en.wikipedia.org/wiki/Programming paradigm), while the number of
programming languages has overcome 2,500 (please refer poster “History of Pro-
gramming Languages” by O’Reilly). Unfortunately, sometimes relations between
programming languages and paradigms (that they support) are vague or not ex-
plicit. Due to this reason and due to the number of programming languages that
support a paradigm (logic, functional and imperative in particular), we use in
this paper logic, functional and imperative pseudocode for representing algo-
rithms (instead of any particular logic, functional or imperative programming
language).

1.3 Preliminaries

Let us start with discussion about information/knowledge that is available for
a “balancing agent” (anyone who would like to detect the fake) after balancing
coins several times.

Before the first balancing, the agent knows initial values of two variables: the
first is variable U for the number of coins about which nothing is known, and
the second is V for the number of coins which are known to be valid; their initial
values are (N −W ) and W respectively.

During the first balancing the agent puts some coins at the first and the
second pans of the balance; the outcome of the first balancing is either “pans
are equal”, “the first pan is lighter than the second”, or “the first pan is heavier
than the second”.

The emerging knowledge after the first balancing are four integer values: an
updated value of the variable U, the second is an updated value of the variable
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V, and values of two new variables L and H that are for the numbers of coins
that were balanced and were at lighter and, respectively, at heavier pans.

If to generalize the above observations, then the agent’s knowledge about
coins after a series of balancing can be represented by the following four non-
negative integer values: U of the number of coins, about which nothing is known
after the series, L of the number of coins that still have to be verified but were
balancing and were at lighter pan, H of the number of coins that still have to be
verified but were balancing and were at heavier pan, V of the number of coins,
which are known (after this series) to be valid. Observe also that these values
meet a natural constraint U + L+H + V = N .

Then we have to discuss how to represent balancing in terms of these four
values. Let us observe that L + H > 0 implies that U = 0 (since L + H > 0
means that the fake has been balanced already, i.e. all other coins are valid).
Due to this reason we can consider two disjoint cases:

1. L+H = 0 and U > 0,
2. L+H > 0 and U = 0.

In the first case any balancing consists in a choice of two numbers u1 and u2
of coins to be put at the first and the second pans, such that 0 < u1 + u2 (since
balancing set should include at least one coin in U), u1 + u2 ≤ U (since coins
for balancing should be selected in U), |u1 − u2| ≤ V (since the oddity in coin
numbers should be compensate by coins in V ).

In the second case balancing consists in selection of numbers l1, h1, and l2,
h2 of coins to put at the first and the second pans such that 0 < l1+ l2+h1+h2
(since balancing set should include at least one coin in L + H), l1 + l2 ≤ L
and h1 + h2 ≤ H (since coins for balancing should be selected in L and H),
|l1 + h1− l2− h2| ≤ V (since the oddity in coin numbers should be compensate
by coins in V ).

1.4 Paper outlines

The rest of the paper is organized as follows. The next section 2 addresses logical
approach to the parameterized puzzle. Then the section 3 develops a functional
solution for the parameterized puzzle. Section 4 converts the functional solution
into imperative one by memoization. Finally the last section 5 concludes by some
related remarks.

2 Logic of Fake Detection

Problem formulation in logic paradigm is a sound axiomatization of desired data
property, problem solution (logic algorithm or program) is a “transformation”
of the axiomatization into a knowledge base which can be effectively used by
some logic inference machine for proving correct answers for user queries. Below
we will illustrate how the logic paradigm can work to solve our parameterized
puzzle.
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We would like to axiomatize the following data property: it is possible to
detect a single fake in a set that consists of N = U + L + H + V coins (where
U , L, H, and V have meaning as in the Preliminaries) by balancing them M
times at most. Let us denote the appropriate predicate by P and represent the
corresponding data property by P (U,L,H, V,M).

Our axiomatization AxP will consist of four axioms. The first axiom describes
situation when the fake is detected already: U+L+H < 1 ↔ P (U,L,H, V,M).
It states that a single fake is already detected in the empty set (U +L+H = 0)
and in any singleton set of coins (U + L + H = 1). The second axiom is also
straightforward: L+H > 0&P (0, L,H, V +U,M) ↔ P (U,L,H, V,M). We have
discussed already its meaning: if the fake has been balanced already (L+H > 0),
then we can say without additional balancing that all other (V + U) coins are
valid.

The remaining two axioms establish connections between P (U,L,H, V,M)
and P (..., ..., ..., ...,M − 1) and are based on the following observation:

a single fake can be detected in a set of coins
by balancing them M times

iff
there exists a balancing such that

in case of any possible outcome of this balancing
(a) pans are equal, (b) the first is lighter, (c) the first is heavier,

the fake can be detected by balancing coins (M − 1) times.

In particular, the third axiom formalizes this observation in the case when
U > 0 and L = H = 0:

P (U, 0, 0, V,M) ↔ ∃u1, u2 (0 < u1 + u2 ≤ U & |u1− u2| ≤ V &
P (U − u1− u2, 0, 0, V + u1 + u2,M − 1) &
P (0, u1, u2, V + (U − u1− u2),M − 1) &
P (0, u2, u1, V + (U − u1− u2),M − 1)).

In verbal form: balancing M times is sufficient for detecting the fake (P (U, 0, 0,
V, M)) iff there exists two sets of coins for balancing at the first and the second
pans (∃u1, u2), that they are selected among “unknown” coins (0 < u1+u2 ≤ U)
with aid of some oddity-compensating valid ones (|u1−u2| ≤ V ), in case of any
possible outcome (‘a’, ‘b’ and ‘c’ from the above) balancing (M − 1) times is
sufficient for detecting the fake (‘a’ ↔ P (U −u1−u2, 0, 0, V +u1 +u2,M − 1),
‘b’ ↔ P (0, u1, u2, V + (U − u1− u2),M − 1), and ‘c’ ↔ P (0, u2, u1, V + (U −
u1− u2),M − 1) respectively).

The fourth axiom formalizes this connection in the case when U = 0 but
L+H > 0:

P (0, L,H, V,M) ↔ ∃l1, l2, h1, h2
(0 < l1 + l2 +h1 +h2 & l1 + l2 ≤ L & h1 +h2 ≤ H & |l1 +h1− l1− l2| ≤ V &

P (0, L− l1− l2, H − h1− h2, V + l1 + l2 + h1 + h2,M − 1) &
P (0, l1, h2, V + (L− l1) + (H − h2),M − 1) &
P (0, l2, h1, V + (L− l2) + (H − h1),M − 1)).
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In words: balancing M times is sufficient for detecting the fake (P (0, L,H, V,M))
if there exists two sets of coins for balancing at the first and the second pans
(∃l1, l2, h1, h2), that are selected among “light” and “heavy” coins (0 < l1+ l2+
h1 + h2, and l1 + l2 ≤ L, h1 + h2 ≤ H) with aid of some oddity-compensating
valid ones (|l1 + h1 − l1 − l2| ≤ V ), in case of any possible outcome (‘a’, ‘b’
and ‘c’ from the above) balancing (M − 1) times is sufficient for detecting the
fake (‘a’ ↔ P (0, L − l1 − l2, H − h1 − h2, V + l1 + l2 + h1 + h2,M − 1), ‘b’
↔ P (0, l1, h2, V + (L − l1) + (H − h2),M − 1), and ‘c’ ↔ P (0, l2, h1, V +
(L− l2) + (H − h1),M − 1) respectively). Maybe, we have to comment why ‘b’
↔ P (0, l1, h2, V + (L− l1) + (H − h2),M − 1) and ‘c’ ↔ P (0, l2, h1, V + (L−
l2) + (H − h1),M − 1). The reason is very simple: the fake coin can not occur
at lighter and heavier pans in series. Really, if the fake was lighter, then it can
occur at lighter pans only; otherwise it can occur at heavier pans only.

The axiomatization AxP is finished. It is sound and complete in the following
sense.

Proposition 1. For every tuple of non-negative integer values (U,L,H, V,M),
the following equivalence holds: AxP ` P (U,L,H, V,M) iff it is possible to detect
a single fake in any set that consists of N = U + L+H + V coins by balancing
them M times at most (where U , L, H, and V have the same meaning as in the
preliminaries).

Proof (sketch) by induction on S = U + L + H. The basic cases when S ≤ 1
are straightforward. Induction step follows from the following simple argument:
for every tuple (U,L,H, V,M), if (U + L + H) > 1, then there exists a “cor-
responding” axiom in AxP with the left-hand side (w.r.t. ‘↔’) that matches
P (U,L,H, V,M); in the right-hand side of the corresponding axiom P is applied
to data (U ′, L′, H ′, V ′,M ′) such that (U ′ + L′ +H ′) < (U + L+H). �

This axiomatization AxP is a logic problem formulation for puzzles that are
similar to our original non-parameterized one, i.e. queries of the following kind:
Whether it is possible to detect fake in a set of coins by balancing them M times.
The corresponding logic solution (a pseudocode of a logic algorithm) should be
a knowledge base that comprises a list of facts and a list of executable inference
rules, that can be used by logic inference machine for efficient deduction of valid
queries.

In particular, the first axiom can be transformed into the following four facts:
P (0, 0, 0, V,M), P (1, 0, 0, V,M), P (0, 1, 0, V,M), and P (0, 0, 1,M).

The second axiom can be converted into the following rule

P (U,L,H, V,M) : − L+H > 0 & P (0, L,H, V + U,M)

and be placed in the list of rules at any place; but it makes sense to transform
it into the following simpler rule

P (U,L,H, V,M) : − P (0, L,H, V + U,M)

and place this simpler rule into the end of the rule list (where it will be used
after the rule that corresponds to the third axiom in the case when L+H > 0).
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The remaining two axioms can be transformed it into the following rules:
P (U, 0, 0, V,M) : − ∃u1, u2 : 0 < u1 + u2 ≤ U (|u1− u2| ≤ V&

P (U − u1− u2, 0, 0, V + u1 + u2,M − 1) &
P (0, u1, u2, V + (U − u1− u2),M − 1) &
P (0, u2, u1, V + (U − u1− u2),M − 1)),

P (0, L,H, V,M) : − ∃l1, l2 : l1 + l2 ≤ L; ∃h1, h2 : h1 + h2 ≤ H
(0 < l1 + l2 + h1 + h2 & |l1 + h1− l1− l2| ≤ V &

P (0, L− l1− l2, H − h1− h2, V + l1 + l2 + h1 + h2,M − 1) &
P (0, l1, h2, V + (L− l1) + (H − h2),M − 1) &
P (0, l2, h1, V + (L− l2) + (H − h1),M − 1)),

and can be put at the top of the rule list in any order (since they match disjoint
cases). These rule are executable since all existential quantifiers are bounded.

This logic program is able to solve our initial non-parameterized puzzle by
proving P (14, 0, 0, 1, 3), and solve other puzzles of several different types. For
example, it can solve how many balancing is sufficient for detecting a single
fake in a set of 39 coins with aid of additional marked valid coin; if one would
like to solve the puzzle than he/she may query this program P(39, 0, 0, 1, ?),
and logic inference machine can answer by “finding” some value M , such that
P (39, 0, 0, 1,M) is provable in AxP ; unfortunately, this value could be any value
greater than 4 (39 for example), but not the minimal one (that is 4). It means
that we have solved the non-parameterized puzzle, but still have to solve the
parameterized one.

3 Functional approach to balancing

Problem formulation in functional paradigm is a set of equations (“equational
theory”) that should to be valid equalities for functions that we want to compute;
functional solution (functional algorithm or program) is set of function defini-
tions that can be effectively used to compute function values for given arguments
that convert the equational theory into valid equalities after instantiation. Let
us apply below the functional paradigm to our parameterized puzzle.

Proposition 2. Let us consider a function1 M : N × N × N × N → N that
for every tuple of arguments U , L, H, V returns the least number of balancing
that is sufficient for detecting a single fake in any set of N = U + L + H + V
coins (where U , L, H and V have the same meaning as in the preliminaries).
Then the following four equalities are valid:

1. if U + L+H ≤ 1 then M(U,L,H, V ) = 0;
2. if L+H > 0 then M(U,L,H, V ) = M(0, L,H, V + U);
3. M(U, 0, 0, V ) = 1 + min0<u1+u2≤U, |u1−u2|≤V

max{M(U − u1− u2, 0, 0, V + u1 + u2),
M(0, u1, u2, V + U − u1− u2),
M(0, u2, u1, V + U − u1− u2)};

1 N is the set of natural numbers, not a natural number (the amount of coins in
particular).
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4. M(0, L,H, V ) = 1 + minl1+l2≤L, h1+h2≤H, 0<l1+l2+h1+h2, |l1+h1−l1−l2|≤V
max{M(0, L− l1− l2, H − h1− h2, V + l1 + l2 + h1 + h2),

M(0, l1, h2, V + (L− l1) + (H − h2)),
M(0, l2, h1, V + (L− l2) + (H − h1))}

Proof (sketch). These equalities follows from corresponding axioms for predicate
p from the previous section 2. Validity of the first two equalities are straight-
forward, but validity of the last two equalities requires some comments. These
equalities start with increment ‘1+’ since corresponding axioms reduce number
of balancing from M to (M − 1). They have min instead of existential quanti-
fiers, since the function returns the least number of balancing. Finally, max stays
on place of conjunction since it represents the worst in three possible outcomes
(cases ‘a’, ‘b’ and ‘c’ in the previous section). �

Proposition 3. There exists unique function M : N ×N ×N ×N → N that
satisfies equalities 1 – 4 in the proposition 2.

Proof (sketch) Existence has been proved in the proposition 2. Uniqueness in
this case means equality of any function M ′ (that satisfies equalities 1 – 4 in the
proposition 2) to the function M that has been specified in the formulation of the
proposition 2. But equality of two functionsM andM ′ means equality of function
values M(U,L,H, V ) and M ′(U,L,H, V ) for every quadruple (U,L,H, V ) of
argument values; equality of these values can be proved by induction on S =
U + L+H. �

So we can adopt equalities 1 – 4 in the proposition 2 as the equational
theory for the parameterized fake-coin puzzle; together with type definition M :
N × N × N × N → N these equational theory becomes a functional problem
formulation.

The corresponding functional solution (functional algorithm) is the following
single function definition that comprises seven clauses:
M : (1, 0, 0, V ) = 0;

(0, 1, 0, V ) = 0;
(0, 0, 1, V ) = 0;
(0, 0, 0, V ) = 0;
(U, 0, 0, V ) = 1 + min0<u1+u2≤U, |u1−u2|≤V

max{M(U − u1− u2, 0, 0, V + u1 + u2),
M(0, u1, u2, V + U − u1− u2), M(0, u2, u1, V + U − u1− u2)};

(0, L,H, V ) = 1 + minl1+l2≤L, h1+h2≤H, 0<l1+l2+h1+h2, |l1+h1−l1−l2|≤V
max{M(0, L l1− l2, H − h1− h2, V + l1 + l2 + h1 + h2),

M(0, l1, h2, V + (L− l1) + (H − h2)),
M(0, l2, h1, V + (L− l2) + (H − h1))};

(U,L,H, V ) = M(0, L,H, V + U).
Here first four clauses represent all solutions of the equation 1, fifth and sixth
clauses define how to compute function values to solve equations 3 an 4 respec-
tively. The last clause corresponds to the equation 2. Let us remark that this
equation could be converted into the following clause (U,L,H, V ) = if L +
H > 0 then M(0, L,H, V + U) and be placed in between the fourth and the
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fifth clauses, but (like in logic solution) we transform it into (U,L,H, V ) =
M(0, L,H, V + U) and place at the end of the definition since at this place it
will be used only in the case when L+H > 0.

Finally let us exercise manually the above functional solution for some simple
data. For example, for values U = 4, L = H = 0 and V = 1, that correspond
to question how many balancing is sufficient to detect a single fake in a set of 4
coins with use of one additional valid coin2:
M(4, 0, 0, 1) = 1 + min0<u1+u2≤4, |u1−u2|≤1

max{M(4− u1− u2, 0, 0, 1 + u1 + u2), M(0, u1, u2, 5− u1− u2),
M(0, u2, u1, 5− u1− u2)} =

= 1 +min(u1,u2)∈{(0,1),(1,0),(1,1),(1,2),(2,1),(2,2)}
max{M(4− u1− u2, 0, 0, 1 + u1 + u2), M(0, u1, u2, 5− u1− u2),

M(0, u2, u1, 5− u1− u2)} =
= 1 +min{max{M(3, 0, 0, 2),M(0, 0, 1, 4),M(0, 1, 0, 4)},

max{M(3, 0, 0, 2),M(0, 1, 0, 4),M(0, 0, 1, 4)},
max{M(2, 0, 0, 3),M(0, 1, 1, 3),M(0, 1, 1, 3)},
max{M(1, 0, 0, 4),M(0, 1, 2, 2),M(0, 2, 1, 2)},
max{M(1, 0, 0, 4),M(0, 2, 1, 2),M(0, 1, 2, 2)},

max{M(0, 0, 0, 5),M(0, 2, 2, 1),M(0, 2, 2, 1)}}.
Let us observe that in this exercise all but one functional calls are duplicated:

M(3, 0, 0, 2), M(0, 1, 1, 3), M(0, 1, 2, 2), M(0, 2, 1, 2), and M(0, 2, 2, 1); the single
call without duplicates is M(2, 0, 0, 3). Moreover, if to proceed further with our
exercise, the number of duplicated (triplicated and so on) of calls will increase.

It leads to a natural idea to compute new emerging function calls once,
save their values, and reuse saved values when a duplication call emerge. These
technique is well-known optimization in functional programming as memoization
[3]. Applying this optimization and omitting all these intermediate computations
we can finish the above exercise as follows:
M(4, 0, 0, 1) = 1 + min{max{2, 0, 0}, max{2, 0, 0},

max{1, 1, 1}, max{0, 1, 1}, max{0, 1, 1}, max{0, 2, 2}} = 2.

4 Categorical Imperative: compute efficiently!

Memorization is not unique technique that can be applied to optimization of the
execution of the above functional algorithm. Lazy computations can help also. In
particular, lazy memoization consists in saving all emerging function calls, then
(when no new calls emerge) sort all saved calls (according to call dependence),
execute each saved call once, save all computed values, and use saved values
when they become mandatory (inevitable) in computations.

For instance, in the above exercise with functional call M(4, 0, 0, 1) we had
several emerging functional calls: M(0, 1, 1, 3), M(0, 1, 2, 2), M(0, 2, 1, 2), M(3,
0, 0, 2), M(0, 2, 2, 1), ... Of course, M(0, 1, 1, 3) is “simpler” than M(0, 1, 2, 2)
and M(0, 2, 1, 2), since in the former case just 2 coins are not-verified, while

2 We omit technical details of this exercise.
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there are 3 coins to be verified in the later cases. Call M(3, 0, 0, 2) is simpler
that M(0, 2, 2, 1) due to the same reason. In contrast, calls M(0, 1, 2, 2) and
M(0, 2, 1, 2) are simple that M(3, 0, 0, 2), since in the former cases the balancing
agent has some knowledge about coins while in the later case any information
is unavailable. So, for the sake of efficiency, values of M(0, 1, 1, 3), M(0, 1, 2, 2),
M(0, 2, 1, 2), M(3, 0, 0, 2), M(0, 2, 2, 1) have to be computed and saved in this
order.

But why effectiveness should rely upon computation optimization via lazy
memoization? Why not to use memory explicitly and compute in advance all
values for all possible (and, maybe, some extra) function calls (but in the right
sequence: the simplest — the first, the hardest — the last)? In our particular
case (the parameterized fake-coin puzzle) some upper approximation for the set
of all possible function call is easy to predict.

Proposition 4. Let M : N × N × N × N → N be a function defined by the
functional algorithm in the previous section 3. Then for all non-negative integers
U , L, H, and V the set FCM(U,L,H, V ) of all function calls that occur in the
computation of M(U,L,H, V ) (according to the definition in the section 3) is
contained in one of the following sets

– {M(0, L,H, V ′) : V ′ ≤ V + U} ∪
∪{M(0, L′, H ′, V ′) : L′ < L, H ′ < H, V ′ ≤ V + U + L+H − L′ −H ′},

if U > 0 and L+H > 0;
– {M(0, L′, H ′, V ′) : L′ < L, H ′ < H, V ′ ≤ V + U + L+H − L′ −H ′},

if U = 0 and L+H > 0;
– {M(U ′, 0, 0, V ′) : U ′ < U, V ′ ≤ V + U − U ′} ∪

∪ {M(0, L′, H ′, V ′) : U ≥ L′ +H ′, V ′ ≤ V + U − L′ −H ′)},
if U > 0 and L+H = 0.

Proof (sketch) by induction on S = U + L+H. �
Imperative problem formulation consists in a command that decrees to com-

pute a set of data values in accordance explicit rules of data manipulation and
transformation. Imperative problem solution (imperative algorithm or program)
is a well-defined sequence of operators that are commands of transformations of
values that are stored in individual elements of a computer memory (“memory
cells”).

A preliminary imperative formulation of the parameterized puzzle can be
as follows: for a given integer value N ≥ 0 fill-in a four-dimensional table
T [0..N, 0..N, 0..N, 0..N ] by corresponding values of the function M specified in
the proposition 2, i.e. by integers such that for every tuple (U,L,H, V ) of non-
negative integers, if U +L+H + V ≤ N , then T [U,L,H, V ] is the least number
of balancing to detect a single fake in a set of U + L + H + V coins (where U ,
L, H, V have the same meaning as in the preliminaries).

According to our functional solution of the parameterized fake-coin puzzle,
this preliminary imperative formulation can be transformed into the follow-
ing final one: for a given integer value N ≥ 0 fill-in a four-dimensional table
T [0..N, 0..N, 0..N, 0..N ] in accordance with following rules (whenever the sum
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of the indexes ≤ N):
T (1, 0, 0, V ) = T (0, 1, 0, V ) = T (0, 0, 1, V ) = T (0, 0, 0, V ) = 0 for all V ∈ [0..N ];
T (U, 0, 0, V ) = 1 + min0<u1+u2≤U, |u1−u2|≤V

max{T (U − u1− u2, 0, 0, V + u1 + u2), T (0, u1, u2, V + U − u1− u2),
T (0, u2, u1, V + U − u1− u2)};

T (0, L,H, V ) = 1 + minl1+l2≤L, h1+h2≤H, 0<l1+l2+h1+h2, |l1+h1−l1−l2|≤V
max{T (0, L− l1− l2, H − h1− h2, V + l1 + l2 + h1 + h2),

T (0, l1, h2, V + (L− l1) + (H − h2)),
T (0, l2, h1, V + (L− l2) + (H − h1))};

T (U,L,H, V ) = T (0, L,H, V + U).

The above Proposition 4 leads to an idea how to fill-in the table in the right
sequence: in the order of ascending of sum of indexes U + L + H + V , but for
every value of the sum in [0..N ], elements T [0, L,H, V ] should be filled first,
next — elements T [U, 0, 0, V ], finally — elements T [U,L,H, V ]. This idea can
be implemented by imperative solution as follows:
constn;
var u, l, h, v, s, l1, l2, h1, h2, u1, u2 : integer;
var t : integer array of [0..n, 0..n, 0..n, 0..n];
begin
for v = 0 to n do
begin t(1, 0, 0, v) := 0; t(0, 1, 0, v) := 0; t(0, 0, 1, v) := 0; t(0, 0, 0, v) = 0 end;
for s = 2 to n do

begin
for l = 0 to s do

for h = 0 to (s− l) do
t(0, l, h, s− l − h) := 1+

minl1+l2≤l, h1+h2≤h, 0<l1+l2+h1+h2, |l1+h1−l1−l2|≤(s−l−h) max{
t(0, l − l1− l2, h− h1− h2, s− l − h+ l1 + l2 + h1 + h2),

t(0, l1, h2, s− l1− h2), t(0, l2, h1, s− l2− h1)};
for u = 0 to s do

t(u, 0, 0, s− u) := 1 + min0<u1+u2≤u, |u1−u2|≤(s−u) max{
t(u− u1− u2, 0, 0, s− u+ u1 + u2), t(0, u1, u2, s− u1− u2),

t(0, u2, u1, s− u1− u2)};
for u = 0 to s do

for l = 0 to (s− u) do
for h = 0 to (s− u− l) do

t(u, l, h, v) := t(0, l, h, s− l − h)
end

end.

Imperative solution is done. Let us remark, that it was extracted from a
functional one by lazy memoization, which, in turn, was extracted from a logic
solution.
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5 Conclusion

We start this paper with logic solution for a puzzle “Is balancing M -times suffi-
cient for detecting the fake in a set of coins?”, and finishes with the imperative
algorithm, that effectively computes the minimal number of balancing that is
sufficient for detection the fake. Thus the paper can be considered as a kind of
case-study of algorithm (a program) inversion.

At the same time some ideas (that have been exploited in this paper) can
be generalized for inverting some logic and functional algorithms and programs.
In particular, let us assume that a functional algorithm (program) defines a
partial function F : D → R such that for every X ∈ D it is easy to compute
an upper approximation of the set of all function calls FCF (X), that emerge in
the computation of F (X). Then the function F can be efficiently inverted in the
following sense: for every Y ∈ R, for every finite D′ ⊆ D the set3

(F � D′)−(Y ) = {X ∈ D′ : F (X) = Y }

can be computed by dynamic programming. For instance, function M : N ×
N × N × N → N (that was discussed in section 3) enjoys this property (see
Proposition 4) and can be inverted by means of the table T (computed in the
section 4 by dynamic programming).

Let us also remark that the parameterized puzzle has been used in Asian Re-
gional ACM International Collegiate Programming Contest in year 2000 (prob-
lem H). One can try the following (more complicated) version of the puzzle [4]:

Write a program with 3 inputs: a number U ≥ 0 of coins under question,
a number V ≥ 0 of marked valid coins, and a limit K ≥ 0 for the num-
ber of balancing, that outputs either the string impossible, or another
executable interactive program ALPHA (in the same language) with re-
spect to existence of a strategy to identify a single false coin among U
coins with use of additional V marked valid coins and weighing coins
K times at most. Your program should output impossible iff there is no
such strategy. Otherwise it should output the program ALPHA which
implements a strategy in the following settings.
– All (U +V ) coins are enumerated by consecutive numbers from 1 to

(U + V ), all marked valid coins are enumerated by initial numbers
from 1 up to V .

– Every interactive session with ALPHA begins with user’s initial de-
cision on the coin number of the false coin in [(V + 1)..(V +U)] and
whether it is lighter or heavier.

– Every interactive session with ALPHA consists of a series of rounds
and the number of rounds in the session can not exceed K.

– In each round i ∈ [1..K] the program ALPHA outputs two disjoint
subsets of coin numbers to be placed on the first and the second pans
of the balance and prompts the user with ‘?’ for a reply.

3 ‘�’ denotes domain restriction of a function.
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– The user in his/her turn replies with ‘<’, ‘=’, or ‘>’ in accordance
with the initial decision on the number of the false coin and its
weight.

– Every interactive session with ALPHA finishes with the final output
string “False coin number is ” followed by the coin number of the
false coin.

Since the problem is to write a program which generates another program we
would like to refer to the first program as a metaprogram and to the problem as
the metaprogram problem respectively. This problem has been discussed in the
context of propositional program logics and solved in [4].
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A A Puzzle for You...

Finally I would like to draw attention to another coin puzzles, which can be
called Find Money Puzzle. Again, let us start with a non-parameterized puzzle4

and finish with a parameterized version5. Non-parameterized puzzle (enjoy!):

A set consists of 40 coins, three of them are fake and 37 are valid ones.
All coins look identical, all valid coins have equal weight, but all fakes are
lighter than the valid ones. Is it possible to select 18 valid by balancing
coins 3 times at most?

Parameterized Find Money Puzzle (logic, functional, and imperative feasible
algorithms are welcome by e-mail to author):

Write a program that inputs a number N ≥ 0 of coins, a number L ∈
[0..N ] of fake coins (the remaining (N − L) coins are valid), a number
V ∈ [0..(N − L)], and outputs the least number of balancing M that is
always sufficient for selecting V valid coins in this set. (Assume that all
valid coins have one and the same weight while fake coins are lighter.)

4 I know how to solve it.
5 I do not know how to solve it.
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