
Preliminary Report on a Self-Applicable
Online Partial Evaluator for Flowchart

Robert Glück ?

DIKU, Dept. of Computer Science, University of Copenhagen,
DK-2100 Copenhagen, Denmark

Abstract. This is a preliminary report on a self-applicable online partial
evaluator for a flowchart language with recursive calls. Self-application of
the partial evaluator yields generating extensions that are as efficient as
those reported in the literature for offline partial evaluation. This result is
remarkable because partial evaluation folklore has indicated that online
partial evaluation techniques unavoidably lead to overgeneralized gener-
ating extensions. The purpose of this paper is not to argue which line of
partial evaluation is better, but to show how the problem can be solved
by recursive polyvariant specialization. The online partial evaluator, its
techniques and implementation, are presented in a complete way. Full
self-application according to the Futamura projections is demonstrated.

1 Introduction

This paper reports on the design and implementation of a self-applicable on-
line partial evaluator for a flowchart language with recursive calls. The partial
evaluator does not require partial evaluation techniques that are stronger than
those already known, but another organization of the algorithm. This result is
remarkable because partial evaluation folklore has indicated that online tech-
niques unavoidably lead to overgeneralized generating extensions [13, Ch. 7].
Offline partial evaluation was invented specifically to solve the problem of self-
application [14]. The purpose of this investigation is not to argue which line of
partial evaluation is better, but to show how the problem can be solved. Self-
application of the online partial evaluator converts interpreters into compilers
and produces a self-generating compiler generator, all of which are as efficient as
those known from the literature on offline partial evaluation (e.g., [10,13,14,17]).

The offline partial evaluator mix for a flowchart language described by Go-
mard and Jones [10] is well suited as the basis for the online partial evaluator
because their partial evaluator does not follow the binding-time annotations of
a subject program, but bases its decisions whether to interpret or residualize
flowchart commands on a division of the program variables into static and dy-
namic ones, which was precomputed by a monovariant binding-time analysis.
Another important advantage is that partial evaluation for flowchart languages

? Part of this work was performed while the author was visiting the National Institute
of Informatics (NII), Tokyo.

31

p ::= ((x∗) (l) (b+)) (program)
b ::= (l a∗ j) (basic block)
a ::= (x := e) (assignment)
| (x := call l) (call)

j ::= (goto l) (unconditional jump)
| (if e l l) (conditional jump)
| (return e) (return)

e ::= (o u∗) (simple expression)
o ::= hd | tl | cons | + | - | = | < | . . . (primitive operator)
u ::= x | 'v (operator argument)
x ∈ Name v ∈ Value l ∈ Label

Fig. 1. Scheme representation of Flowchart programs with recursive calls.

Call
σ b̀lock Γ (l)⇒ (〈halt, v〉, σ′)

σ àssign x := call l ⇒ σ[x 7→v]

Fig. 2. Inference rule extending Hatcliff’s operational semantics of FCL [11,
Fig. 6]

has been very well documented (e.g., [2–4, 10, 11, 13]), which should make our
results easily accessible and comparable.

Turning mix into an online partial evaluator required two modifications:
(1) the division of the program variables is maintained as an updatable set of
variable names at specialization time, and (2) the partial evaluator is rewritten
to perform recursive polyvariant specialization [7] instead of the usual itera-
tive version with an accumulating parameter (pending list). This required an
extension of the flowchart language with a simple recursion mechanism. Full
self-application according to the Futamura projections is demonstrated by con-
verting an interpreter for Turing-machines [10] into a compiler, a universal parser
for regular languages [2] into a parser generator, and the partial evaluator itself
into a compiler generator. Self-application of the online partial evaluator can
also generate generating extensions that are more optimizing than those pro-
duced by the original mix. The generating extension of the Ackermann function
can specialize and precompute the function at program generation time, thereby
producing fully optimized residual programs.

Throughout this paper, we assume that readers are familiar with the basics
of partial evaluation, e.g., as presented by Jones et al. [13, Part II]. Use is made
as much as possible of existing partial evaluation techniques for flowchart lan-
guages [10,11] to focus the attention on essential differences, instead of irrelevant
details.

32 Robert Glück

((m n) (ack)

((ack (if (= m 0) done next))

(next (if (= n 0) ack0 ack1))

(done (return (+ n 1)))

(ack0 (n := 1)

(goto ack2))

(ack1 (n := (- n 1))

(n := (call ack m n))

(goto ack2))

(ack2 (m := (- m 1))

(n := (call ack m n))

(return n))))

A(m,n) =

n+ 1 if m = 0
A(m− 1, 1) if n = 0
A(m− 1, A(m,n− 1)) otherwise

Fig. 3. Ackermann program and its function

2 A Simple Imperative Language with Recursive Calls

Flowchart is a simple imperative language [10, 11] with variables, assignments,
and jumps (Fig. 1). A program consists of a sequence of labeled basic blocks.
As is customary, the set of values and labels is that of the Lisp S-expressions.
The operational semantics of the language is identical to the one that has been
formalized and published by Hatcliff [11], except that we add a simple command
for calling blocks:

x := call l

The command executes the block labeled l in a copy of the current store σ
and assigns the return value to the variable x in the original store σ. (In an
actual implementation this only requires copying the variables that are live at
the entry of block l.) The command allows recursive calls, has no side-effects, and
requires only one additional inference rule in Hatcliff’s operational semantics [11,
Fig. 6]. The inference rule in Fig. 2 is parameterized with respect to Γ , a partial
function that maps labels to blocks in a program, and updates the store σ at
x with the return value v, which is marked by halt. Due to its simplicity, the
command is easy to interpret and specialize. For the sake of brevity, we refer
to the extended language as Flowchart. The syntax can easily be generalized to
calls with argument expressions.

An implementation of the Ackermann function using the call command is
shown in Fig. 3. For the sake of readability, we annotate each call with the
variables that are live at the called block and write integer constants without
quotes. The program is defined recursively, takes the non-negative integers m and
n as input, and starts program execution at block ack. The double recursion on
both m and n cannot be expressed in terms of primitive recursion.

For the sake of conciseness we shall write many of the programs in pseudocode
using constructs such as while . . . do and pattern matching case . . . of, which are
to be regarded as structured ways of writing Flowchart programs. Fig. 4 shows

33

procedure evalpp :: pp × vs × program → value
block := lookup(pp,program);
while block is not empty do
begin command := first-command(block); block := rest(block);

case command of
x := rhs: case rhs of

call pp: vs := vs[x 7→ call evalpp(pp,vs,program)];
e: vs := vs[x 7→ evalexp(e,vs)];

if e pp’ pp’’: if evalexp(e,vs) = true
then block := lookup(pp’, program)
else block := lookup(pp’’,program);

goto pp: block := lookup(pp,program);
return e: value := evalexp(e,vs);

end;
return value

Fig. 4. A self-interpreter for Flowchart written in pseudocode

the self-interpreter evalpp for Flowchart written in pseudocode. It inputs a label
pp, a store vs, and a program program, and returns the value of the program.
Fragments of the interpreted program are written in italics for clarity. The self-
interpreter makes liberal use of primitive operators such as lookup for finding a
block pp in a program and evalexp for evaluating an expression e in a store vs.
Note the simplicity of interpreting a call by recursively calling the self-interpreter.

3 Online Partial Evaluation Techniques

A partial evaluator for Flowchart takes values for the static parameters of a
program and tries to precompute as many commands as possible. Program code
is generated for commands that cannot be precomputed (they are residualized).
A specialization strategy is said to be online if the values computed at the time
of specialization can affect the choice of action taken; otherwise a strategy is
said to be offline [13, Ch. 4.4.7]. The main advantage of an online strategy is
that it can exploit static information that becomes available at specialization
time, while an offline strategy bases its decisions on the results of a binding-time
analysis (BTA) performed before specialization.

We now explain the specialization principles behind the online partial eva-
luator for Flowchart and in which way it differs from the offline partial evaluator.

3.1 Generating Code for Commands

Fig. 5 shows the specialization of an assignment x := e by an offline partial
evaluator. The binding time of variable x determines whether the assignment is
interpreted or residualized. If x is dynamic, e is reduced to e’ by constant folding
using the static values in the store vs and an assignment x := e’ is generated. If x
is static, e is evaluated in vs and the value of x in vs is updated. The congruence

34 Robert Glück

Command Done at specialization time Generated code

x := e
(if x is dynamic)

e’ := reduce(e,vs,division) x := e’

x := call pp
(if x is dynamic)

x := call (pp,vs)

x := e
(if x is static)

vs := vs[x 7→ evalexp(e,vs)]

x := call pp
(if x is static)

vs := vs[x 7→ call evalpp(pp,vs,program)]

Fig. 5. Offline code generation for assignments

Command Done at specialization time Generated code

x := e
(if e is dynamic)

e’ := reduce(e,vs,division);
division := division \ {x} x := e’

x := call pp
(if a var live at pp
is dynamic)

division := division \ {x} x := call (pp,vs)

x := e
(if e is static)

vs := vs[x 7→ evalexp(e,vs)];
division := division ∪ {x}

x := call pp
(if all vars live at pp
are static)

vs := vs[x 7→ call evalpp(pp,vs,program)];
division := division ∪ {x}

Fig. 6. Online code generation for assignments

Command Done at specialization time Generated code

if e pp’ pp”
(if e is dynamic)

e’ := reduce(e,vs,division) if e’ (pp’,vs) (pp”,vs)

if e pp’ pp”
(if e is static
and value = true)

value := evalexp(e,vs) goto (pp’,vs)

if e pp’ pp”
(if e is static
and value = false)

value := evalexp(e,vs) goto (pp”,vs)

goto pp goto (pp,vs)

return e e’ := reduce(e,vs,division); return e’

Fig. 7. Online and offline code generation for control flow (no transition com-
pression)

of the binding times calculated by the BTA guarantees that e can be evaluated
in vs whenever x is static [12]. In the case of mix, which uses a monovariant BTA,
the same division is valid at all program points. The division can be represented
by a set division that contains the names of all static variables. Variables that
are not in this set are dynamic.

35

Likewise, x := call pp is interpreted or residualized depending on the binding
time of x. If x is dynamic, the call is residualized as x := call (pp,vs) and later a
residual block (pp,vs), that is block pp specialized with respect to vs, is generated.
Otherwise, the call is static and interpreted by the self-interpreter evalpp (Fig. 4).

In an online partial evaluator the division is not known until specialization
time. Thus, instead of using the binding time of x in an assignment x := e, the
binding time of e determines whether the assignment is interpreted or residual-
ized. The binding time of x is changed accordingly by adding it to or removing
it from the division. Fig. 5 shows the partial evaluation of an assignment by
an online partial evaluator. The binding times of variables are determined and
propagated at specialization time and may affect the course of partial evaluation.

Similarly for x := call pp, except that the binding times of all variables that
are live at pp determine whether the assignment is interpreted or residualized.
If all live variables are static, the call is interpreted in vs and the return value
is assigned to x. Otherwise, an assignment x := call (pp,vs) is generated. The
division is updated according to the binding time of x.

In an online partial evaluator the binding time of a variable x on the left-hand
side of an assignment depends on the binding time of the expression or the call
on the right-hand side. Depending on the outcome, the division is updated at
specialization time. The division is not predetermined and can change during
partial evaluation.

Control flow commands Code generation without transition compression is shown
in Fig. 7. The partial evaluation of control flow commands is the same in online
and offline partial evaluation. However, as a consequence of the online treatment
of assignments, the decision taken by an online partial evaluator, namely whether
to residualize a conditional or to select one of the branches (pp’, pp”), depends on
the actual static values obtained from the assignments preceding the conditional.
Even though the only visible difference between code generation in an online
and offline partial evaluator is confined to the handling of assignments (Fig. 5
vs. Fig. 6), the process of partial evaluation proceeds quite differently.

Transition compression Residual programs produced by the code generation de-
scribed above often contain chains of trivial transitions (blocks consisting only of
goto commands), which makes them less readable. Transition compression can be
performed during partial evaluation by continuing code generation directly with
the commands in a block pp instead of generating goto pp (Fig. 7). Transition
compression can also be performed after partial evaluation in a post-processing
phase. The choice of the transition compression strategy does not affect the spe-
cialization strength or the self-applicability of the partial evaluators, only the
size of the residual programs which they generate.

3.2 Two Simple Polyvariant Specialization Algorithms

Program point specialization incorporates the values of the static variables into
a program point. In polyvariant block specialization [2] each block in a subject

36 Robert Glück

procedure polyloop :: pp × vs → code
pend := {(pp,vs)}; done := {}; code := {};
while pend is not empty do
begin

pick (pp,vs) ∈ pend;
code := code ∪ generate residual block for pp using the values in vs;
done := done ∪ {(pp,vs)}; pend := (pend ∪ successors(pp,vs)) \ done

end;
return code

Fig. 8. A simple iterative specialization algorithm polyloop [10]

procedure polyrec :: pp × vs × code → code
if no residual block labeled (pp,vs) exists in code then
begin

code := code ∪ generate residual block for pp using the values in vs;
let {(pp1,vs1), . . . , (ppn,vsn)} = successors(pp,vs);
code := call polyrec(pp1,vs1,code);
. . .
code := call polyrec(ppn,vsn,code)

end;
return code

Fig. 9. A simple recursive specialization algorithm polyrec [7]

program may be specialized with respect to several different static stores. A
residual block labeled (pp,vs) is the concatenation of the code generated for the
commands in block pp using the values in vs. Polyvariant block specialization
can be implemented in two different ways. Traditionally, an iterative method is
used that maintains a set of pending and done specialization tasks. We shall see
that a recursive method enables self-application of the online partial evaluator.

1. The iterative method in Fig. 8 maintains two sets, pend and done, to keep
track of the pairs (pp,vs) that are pending specialization and those for which
a residual block was already generated. Block specialization is repeated by
the while-loop until pend is empty. After generating a residual block, the set
of successor blocks, successors(pp,ss) = {(pp1,vs1), ..., (ppn,vsn)}, that is all
blocks that occur in conditionals and calls of the residual block (pp,vs), are
added to pend as new specialization tasks, unless they are already in done.
The residual blocks are collected in a set code and returned as the final result.
Iterative block specialization is invoked by call polyloop (pp0,vs0), where pp0
is the initial label of the subject program and vs0 is the initial static store.

2. The recursive method in Fig. 9 performs block specialization in a depth-first
manner without maintaining a set pend. The successor blocks are specialized
immediately after the specialization of a residual block is completed. The set
code of generated residual blocks doubles as set done. A block specialization

37

(pp,vs) is only performed if the residual block for (pp,vs) does not yet exist in
code. Set code is single-threaded through the recursive calls to avoid repeat-
ing the generation of the same residual block. Consider as an example the
specialization of the two successors blocks (pp1,vs) and (pp2,vs) that occur
in a residual conditional if e (pp1,vs) (pp2,vs):

code := call polyrec(pp1,vs,code);
code := call polyrec(pp2,vs,code)

Recursive block specialization is invoked by call polyrec (pp0,vs0,{}), where
pp0 is the initial label, vs0 is the initial static store, and {} is the initially
empty set of residual blocks.

While the iterative version makes use of a data structure (pend) to keep track
of the specialization tasks, the recursive version relies on the call stack of the
implementation language. The iterative version corresponds to a tail-recursive
function where pend is an accumulating parameter. Functions with accumulating
parameters are notorious for being difficult to specialize.

3.3 Specializing the Simple Specialization Algorithms

The challenge of self-application is the specialization of the partial evaluation al-
gorithm by itself with respect to a known subject program and a known division,
but unknown values for the static store.

Consider first the iterative version. The set pend contains pairs of the form
(pp,vs) where pp is part of the subject program to which the partial evaluator
is specialized and vs is unknown. As a result, pend becomes dynamic. In offline
partial evaluation this problem was solved by precomputing the static set and
using a binding-time improvement, called “The Trick” [13], because the static set
contains finitely many components (pp,names-in-vs). The lookup of a block pp in
the subject program is implemented such that the dynamic pp is compared to all
possible values it can assume and specializes the block to all possible outcomes.
This trick is necessary to avoid generating trivial generating extensions in which
no specialization is performed. The set is precomputed by a BTA.

Now, consider the recursive version. The problem of losing the control infor-
mation does not arise because there is no set pend in which the program points pp
get dynamized. This depth-first specialization method enables the information
to be propagated statically and accurately, even in the case of self-application.
This is the method that we choose for the implementation of the self-applicable
online partial evaluator. It has the additional advantage that it can be used
regardless of whether code generation for commands is online or offline. It can
thus be used in self-applicable online and offline partial evaluators.

4 An Algorithm for Online Partial Evaluation

We now present the complete algorithm for online partial evaluation based on
the specialization techniques described above. It performs code generation with

38 Robert Glück

procedure onmix :: program × division × vs → code
pp := initial-label(program);
code := make-header(varlist(program,division),pp,vs);
return call pepoly(pp,vs,division,program,code)

procedure pepoly :: pp × vs × division × program × code → code
if ¬done(pp,vs,code)
then begin

code := new-block(code,pp,vs);
block := lookup(pp,program);
while block is not empty do
begin command := first-command(block); block := rest(block);
case command of
x := rhs: if static(vars(rhs,program),division)

then begin
case rhs of
call pp: vs := vs[x 7→ call evalpp(pp,vs,program)];
e: vs := vs[x 7→ evalexp(e,vs)];

division := division ∪ {x} end
else begin

case rhs of
call pp: code := call pepoly(pp,vs,division,program,code);

code := add-to(code,make-asg(x ,make-call(pp,vs)));
e: code := add-to(code,make-asg(x ,reduce(e,vs,division)));

division := division \ {x} end;
if e pp’ pp’’: if static(e,division)

then if evalexp(e,vs) = true
then block := lookup(pp’, program)
else block := lookup(pp’’,program)

else begin
code := call pepoly(pp’, vs,division,program,code);
code := call pepoly(pp’’,vs,division,program,code);
code := add-to(code,make-if(reduce(e,vs,division),(pp’,vs),(pp’’,vs)))

end;
goto pp: block := lookup(pp,program);
return e: code := add-to(code,make-return(reduce(e,vs,division)));

end (* while *)
end; (* then *)
return code

Fig. 10. The self-applicable algorithm for online partial evaluation of Flowchart

on-the-fly transition compression and recursive polyvariant block specialization.
The algorithm is given in pseudocode in Fig. 10.

The input to the main procedure onmix is a subject program program, a divi-
sion division of the parameters of the subject program, and a store vs containing
the values of the static parameters. The residual program code is returned as out-

39

((n) (ack-0)

((ack-0 (if (= n 0) ack0-0 ack1-0))

(ack0-0 (return 3)) ; A(1, 1) = 3
(ack1-0 (n := (- n 1))

(n := (call ack-0 n))

(n := (call ack-1 n))

(return n))

(ack-1 (if (= n 0) ack0-1 ack1-1))

(ack0-1 (return 2)) ; A(0, 1) = 2
(ack1-1 (n := (- n 1))

(n := (call ack-1 n))

(n := (call ack-2 n))

(return n))

(ack-2 (return (+ n 1)))))

Fig. 11. Ackermann program specialized with respect to m=2

put. Some initializations are performed before invoking pepoly, which performs
the actual specialization of the blocks in the subject program.

The procedure pepoly implements recursive polyvariant block specialization.
Block pp is specialized with respect to vs and division if no residual block exists
in code, which is tested by the primitive operator done. If the residual block
already exists, code is returned unchanged. Otherwise, the block is fetched from
the program by lookup and the header of the new block is added to code. The list
of commands is then specialized starting with the first command until it is empty.
The while-loop contains a case dispatch which generates code for the commands
as described above. The code is generated with transition compression as can
be seen in the case of specializing goto pp. For example, see the case of goto
pp: instead of generating a residual jump goto (pp,vs), specialization continues
at pp. The primitive operation vars(rhs,program) in the assignment case returns e,
if rhs = e, or an expression with the variables that are live at pp, if rhs = call pp.

The program in Fig. 11 is an example of a residual program produced by the
online partial evaluation algorithm. It was obtained by specializing the Acker-
mann program with respect to m = 2. No post-optimization was performed on
the residual program. Note that m is static throughout the entire Ackermann
program (Fig. 3), while variable n, which is initially dynamic, becomes static in
block ack0 due to assignment n := 1 and, consequently, the call to ack in ack2

is static and can be precomputed at specialization time. The result are the resi-
dual blocks ack0-0 and ack0-1 which return a constant. The same call to ack is
partially static if it is reached from ack1 where n is dynamic. The offline partial
evaluator mix [10] cannot perform this specialization (this would require a poly-
variant expansion of the original Ackermann program based on a polyvariant
binding-time analysis before applying mix). A post-optimization of the residual
program could replace (call ack-2 n) in ack1-1 by expression (+ n 1).

The online partial evaluator described in this paper has the specialization
strength of an offline partial evaluator with a polyvariant binding-time analysis
and monovariant return values. This functional equivalence is not surprising
because an offline partial evaluator with a maximally polyvariant binding-time
analysis can be as accurate as an online partial evaluator [3].

40 Robert Glück

4.1 Live Static Variables

The specialization of blocks with respect to dead static variables can cause con-
siderable code duplication in the residual programs [10]. This is even more critical
in an online partial evaluator because the division and the static store can grow
and shrink during partial evaluation. It is therefore essential to remove all dead
static variables from division and vs each time a new block is looked up in the
subject program. At the beginning of onmix before pepoly is called, the set of
live variables is determined for each block entry in a subject program and a
parameter containing this information is added to pepoly. For readability this
parameter and the operations restricting division and vs to the live variables after
each lookup were omitted in Fig. 10. However, these cleaning-up operations are
crucial for reducing the size of the generated residual program.

4.2 Self-Application

The classification of the three parameters of the main procedure onmix: program
and division are static and vs is dynamic. Operations that depend only on pro-
gram and division can be static, while all other operations that may depend on
vs are dynamic. In particular, the parameters pp, division and program remain
static and only vs and code are dynamic. The recursive method of polyvariant
block specialization keeps this essential information static (pp, division, program),
providing the key to successful self-application. Assignments that depend only
on static variables are fully evaluated when the partial evaluator us specialized
with respect to a subject program and do not occur in the generating extensions
produced by self-application. As an example, the important tests static are al-
ways static when the online partial evaluator is specialized. They will thus never
occur in the generating extensions. Also, a change of the transition compression
strategy does not affect the binding-time separation.

5 Specializing the Online Partial Evaluation Algorithm

A classic example is the specialization of a partial evaluator with respect to an
interpreter for Turing machines, which yields a compiler from Turing-machine
programs to the residual language of the partial evaluator, here Flowchart. We
used the same Turing-machine program and the same Turing-machine inter-
preter1 written in Flowchart as in publication [10, Fig. 3 and Fig. 4].

The first Futamura projection translates the Turing-machine program p into
a Flowchart program tar by specializing Turing-machine interpreter int with
respect to p by the online partial evaluator onmix:

tar = [[onmix]](int, p). (1)

1 A generalization operator was inserted to change the classification of the variable rep-
resenting the left-hand side of the tape from static to dynamic at Left := (GEN '()).

41

The program tar is identical to the one produced by fcl-mix [10, Fig. 5] modulo
minor syntactic differences between the flowchart languages.

The second Futamura projection yields a compiler comp by self-application
of onmix:

comp = [[onmix]](onmix, int). (2)

The compiler comp translates Turing-machine programs into Flowchart. The
compiler is as efficient as the one presented in [10, App. II]. Compilation is done
recursively instead of iteratively due to the recursive polyvariant specialization
used in the specialized onmix. This is also an example how the structure of the
generated compilers can be influenced by specializing different partial evaluators.

The third Futamura projection yields a compiler generator cogen by double
self-application:

cogen = [[onmix]](onmix, onmix). (3)

The compiler generator is as efficient as the one reported for mix [10], except
that cogen performs recursive polyvariant specialization and produces generat-
ing extensions that also perform recursive polyvariant specialization. A compiler
generator produced by the third Futamura projection must be self-generating,
which is a necessary condition for its correctness [6], and so is cogen, which
produces a textually identical copy of itself when applied to onmix:

cogen = [[cogen]] onmix. (4)

Applying cogen to the Ackermann program ack yields a generating extension
ackgen, which produces residual programs of ack given a value for m, such as
the one shown in Fig. 11.

ackgen = [[cogen]] ack. (5)

Application of cogen to Bulyonkov’s universal parser for regular languages [2]
yields a parser generator parsegen that is comparable to the one reported in [7,
Fig. 5], if we disregard the fact that the one in this paper is produced by self-
application of onmix (or by cogen) and implemented in Flowchart, while the one
produced by quasi-self-application [7] is implemented in Scheme and arity raised
by the postprocessor of Unmix [17].

5.1 Overview of Performance

Tables 1 and 2 show some of the preliminary running times for a version of the
online specialization algorithm onmix. Program p and interpreter int are the
Turing-program and the Turing interpreter [10]. The data for ack is m = 2 and
n = 3. The running times are measured AMD Athlon cpu milliseconds using
Dr. Scheme version 4.1.3 under Windows XP Home Edition 2002 and include
garbage collection, if any. The running times are comparable to those reported
in the literature, albeit all Turing-related ratios are slightly smaller compared to
the results [10, Tab. 2], which were reported for a different hardware/software.

42 Robert Glück

Run Time Ratio

out = [[int]](p, d) 78
= [[tar]] d 16 4.9

tar = [[onmix]](int, p) 172
= [[comp]] p 47 3.7

comp = [[onmix]](onmix, int) 938
= [[cogen]] int 547 1.7

cogen = [[onmix]](onmix, onmix) 3016
= [[cogen]] onmix 907 3.3

Table 1. Turing interpreter

Run Time Ratio

out = [[ack]](m, n) 20
= [[ackm]] n 4 5

ackm = [[onmix]](ack, m) 168
= [[ackgen]] m 24 7

ackgen = [[onmix]](onmix, ack) 668
= [[cogen]] ack 496 1.3

Table 2. Ackermann program

6 Related Work

Conventional wisdom holds that only offline partial evaluators using a binding-
time analysis can be specialized into efficient generating extensions (e.g., [1]
and [13, Ch. 7]). Offline partial evaluation was invented specifically to solve this
problem. Mix was the first efficiently self-applicable partial evaluator [14].

The self-applicable partial evaluator presented in this paper makes use of
recursive polyvariant specialization [7] to ensure that the information needed for
specialization of blocks is not prematurely lost (dynamized) at program gener-
ator generation time. An implementation of recursive polyvariant specialization
by the author in 1993 is part of the Unmix distribution, an offline partial eva-
luator for a first-order subset of Scheme [17].

A higher-order pending list was used by a breadth-first inverse interpreter to
allow good specialization by the offline partial evaluator Similix [8, p. 15], but
requires a partial evaluator powerful enough to specialize higher-order values.
The self-application of an online partial evaluator for the λ-calculus without
polyvariant specialization was reported, but the compilers were of the “overly
general” kind [15]. A compromise strategy to self-application of online partial
evaluators is a hybrid ‘mixline’ approach to partial evaluation that distinguishes
between static, dynamic, and unknown binding times [13, Ch. 7.2.3] and [19,20].
A notable exception on the self-application of online specializers is V-Mix [5]
and [9]. A weaker online specializer was specialized by a stronger one [18].

43

7 Conclusions and Future Work

We showed that not only offline partial evaluators, but also online partial eval-
uators can yield generating extensions by self-application that are as efficient as
those reported in the literature for offline partial evaluation. It is noteworthy
that this did not require partial evaluation techniques that are stronger than
those already known today, only a restructuring of the partial evaluator. Al-
though the design of the algorithm is based on a number of existing techniques,
their combination in a new and non-trivial way produced this synergetic effect.

Full self-application according to the Futamura projections was demonstrated
by implementing a non-trivial online partial evaluator for a flowchart language
extended with a simple recursion mechanism. Self-application produced gener-
ating extensions whose structure is as “natural and understandable” as in the
case of offline partial evaluation [16]. There was no loss of efficiency and no
overgeneralization. Self-application of the online partial evaluator can also lead
to generating extensions that are more optimizing than those produced by the
offline partial evaluators for the flowchart language, such as the generating ex-
tension of the Ackermann function. The algorithm for online partial evaluation,
the design, techniques and demonstration, were presented in a complete and
transparent way. Several attempts have been made previously, including work
by the author. We believe that the online partial evaluator for the flowchart
language presented in this paper provides the clearest solution to date. It is be-
lieved that the techniques presented here can be carried over to other recursive
programming languages. It is hoped that this investigation into self-application
can be a basis for novel partial evaluators and stronger generating extensions.

Acknowledgements It is a great pleasure to thank Akihiko Takano for providing
excellent working conditions to the author at the National Institute of Infor-
matics (NII), Tokyo. Thanks to Kenji Moriyama for help with the program
measurements and to Neil Jones and the anonymous reviewers for insightful
comments.

References

1. A. Bondorf, N. D. Jones, T. Æ. Mogensen, P. Sestoft. Binding time analysis and
the taming of self-application. Research note, DIKU, Dept. of Computer Science,
University of Copenhagen, 1988.

2. M. A. Bulyonkov. Polyvariant mixed computation for analyzer programs. Acta
Informatica, 21(5):473–484, 1984.

3. N. H. Christensen, R. Glück. Offline partial evaluation can be as accurate as online
partial evaluation. ACM TOPLAS, 26(1):191–220, 2004.

4. S. Debois. Imperative-program transformation by instrumented-interpreter spe-
cialization. Higher-Order and Symbolic Computation, 21(1-2):37–58, 2008.

5. R. Glück. Towards multiple self-application. In Proceedings of the Symposium on
Partial Evaluation and Semantics-Based Program Manipulation, 309–320. ACM
Press, 1991.

44 Robert Glück

6. R. Glück. Is there a fourth Futamura projection? In Partial Evaluation and
Program Manipulation. Proceedings, 51–60. ACM Press, 2009.

7. R. Glück. An experiment with the fourth Futamura projection. In A. Pnueli,
I. Virbitskaite, A. Voronkov (eds.), Perspectives of System Informatics. Proceed-
ings, LNCS 5947, 135–150. Springer-Verlag, 2010.

8. R. Glück, Y. Kawada, T. Hashimoto. Transforming interpreters into inverse inter-
preters by partial evaluation. In Partial Evaluation and Semantics-Based Program
Manipulation. Proceedings, 10–19. ACM Press, 2003.

9. R. Glück, V. F. Turchin. Application of metasystem transition to function inver-
sion and transformation. In Proceedings of the Int. Symposium on Symbolic and
Algebraic Computation (ISSAC’90), 286–287. ACM Press, 1990.

10. C. K. Gomard, N. D. Jones. Compiler generation by partial evaluation: a case
study. Structured Programming, 12(3):123–144, 1991.

11. J. Hatcliff. An introduction to online and offline partial evaluation using a simple
flowchart language. In J. Hatcliff, T. Æ. Mogensen, P. Thiemann (eds.), Partial
Evaluation. Practice and Theory, LNCS 1706, 20–82. Springer-Verlag, 1999.

12. N. D. Jones. Automatic program specialization: a re-examination from basic prin-
ciples. In D. Bjørner, A. P. Ershov, N. D. Jones (eds.), Partial Evaluation and
Mixed Computation, 225–282. North-Holland, 1988.

13. N. D. Jones, C. K. Gomard, P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993.

14. N. D. Jones, P. Sestoft, H. Søndergaard. An experiment in partial evaluation: the
generation of a compiler generator. In J.-P. Jouannaud (ed.), Rewriting Techniques
and Applications, LNCS 202, 124–140. Springer-Verlag, 1985.

15. T. Æ. Mogensen. Self-applicable online partial evaluation of the pure lambda
calculus. In Proceedings of the Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, 39–44. ACM Press, 1995.

16. S. A. Romanenko. A compiler generator produced by a self-applicable specializer
can have a surprisingly natural and understandable structure. In D. Bjørner, A. P.
Ershov, N. D. Jones (eds.), Partial Evaluation and Mixed Computation, 445–463.
North-Holland, 1988.

17. S. A. Romanenko. The specializer Unmix, 1990. Program and documentation
available from ftp://ftp.diku.dk/pub/diku/dists/jones-book/Romanenko/.

18. E. Ruf, D. Weise. On the specialization of online program specializers. Journal of
Functional Programming, 3(3):251–281, 1993.

19. M. Sperber. Self-applicable online partial evaluation. In
O. Danvy, R. Glück, P. Thiemann (eds.), Partial Evaluation. Proceedings, LNCS
1110, 465–480. Springer-Verlag, 1996.

20. E. Sumii, N. Kobayashi. Online-and-offline partial evaluation: a mixed approach.
In Partial Evaluation and Semantics-Based Program Manipulation. Proceedings,
12–21. ACM Press, 2000.

A Appendix: Ackermann Generation Extension

Fig. 12 shows the complete generating extension of the Ackermann program in
Fig. 3 produced by self-application of the online partial evaluator onmix. Given a
value for m, the generating extension produces a residual program such as the one
shown in Fig. 11. No arity raising was performed, so the input to the generating
extension is a list initial-vs that contains a single value (m). The generating

45

((initial-vs) (0-0)
((0-0 (vs := (initstore '(m) initial-vs))

(vs := (procrustes vs '(m)))
(code := (make-header '(n) 'ack vs))
(code := (call 1-0 vs code))
(return code))

(1-0 (if (done 'ack vs code) 2-0 3-0))
(2-0 (return code))
(3-0 (code := (new-block code 'ack vs))

(if (evalexp '(= m 0) vs) 16-0 17-0))
(16-0 (return (add-to code (list 'return (reduce '(+ n 1) vs '())))))
(17-0 (vs1 := (procrustes vs '(m)))

(vs2 := (procrustes vs '(m)))
(cond := (list 'if (reduce '(= n 0) vs '(m)) (cons 'ack0 vs1) (cons 'ack1 vs2)))
(vs := vs1)
(code := (call 1-1 vs code))
(vs := vs2)
(code := (call 1-2 vs code))
(return (add-to code cond)))

(1-1 (if (done 'ack0 vs code) 2-0 3-1))
(3-1 (code := (new-block code 'ack0 vs))

(vs := (assign 'n (evalexp '1 vs) vs))
(vs := (assign 'm (evalexp '(- m 1) vs) vs))
(value := (call 50-0 vs))
(vs := (assign 'n value vs))
(return (add-to code (list 'return (reduce 'n vs '(m n))))))

(1-2 (if (done 'ack1 vs code) 2-0 3-2))
(3-2 (code := (new-block code 'ack1 vs))

(code := (add-to code (list 'n ':= (reduce '(- n 1) vs '(m)))))
(vs1 := vs)
(vs := (procrustes vs '(m)))
(code := (call 1-0 vs code))
(code := (add-to code (list 'n ':= (make-call 'ack vs '(n)))))
(vs := vs1)
(vs := (assign 'm (evalexp '(- m 1) vs) vs))
(vs1 := vs)
(vs := (procrustes vs '(m)))
(code := (call 1-0 vs code))
(code := (add-to code (list 'n ':= (make-call 'ack vs '(n)))))
(vs := vs1)
(return (add-to code (list 'return (reduce 'n vs '(m))))))

(50-0 (if (evalexp '(= m 0) vs) 57-0 58-0))
(57-0 (return (evalexp '(+ n 1) vs)))
(58-0 (if (evalexp '(= n 0) vs) 57-1 58-1))
(57-1 (vs := (assign 'n (evalexp '1 vs) vs))

(vs := (assign 'm (evalexp '(- m 1) vs) vs))
(value := (call 50-0 vs))
(vs := (assign 'n value vs))
(return (evalexp 'n vs)))

(58-1 (vs := (assign 'n (evalexp '(- n 1) vs) vs))
(value := (call 50-0 vs))
(vs := (assign 'n value vs))
(vs := (assign 'm (evalexp '(- m 1) vs) vs))
(value := (call 50-0 vs))
(vs := (assign 'n value vs))
(return (evalexp 'n vs)))))

Fig. 12. Generating extension of the Ackermann program (m static, n dynamic)

extension inherits several primitive operations from the actual implementation of

46 Robert Glück

onmix. The store vs is updated by primitive operation assign and the primitive
operation procrustes limits a store vs to the bindings of the variables listed
as its second argument. Code is generated and added to the residual program
by the primitive operations make-header, make-call, add-to, and new-block. The
primitive operations reduce and evalexp are identical to the ones in Sect. 3.1.

The blocks from 1-0 to 17-0, from 1-1 to 3-1, and from 1-2 to 3-2 produce
residual versions of the original blocks ack, ack0, and ack1, respectively. They
are specialized versions of procedure pepoly (Fig. 10) implemented in Flowchart.

The blocks from 50-0 to 58-1 are a complete implementation of the Acker-
mann function albeit with interpretive overhead inherited from the self-inter-
preter evalpp (Fig. 4), which is part of onmix. The entry block 50-0 is called in
block 3-1 to compute the value of the Ackermann function. It is instructive to
compare this implementation to the original program (Fig. 3). Even though this
version is slower than the original program, it allows the generating extension
to precompute the Ackermann function when generating a residual program.

Transition compression has duplicated some commands (e.g., the commands
of the original block ack2 are the last four commands of the blocks 57-1 and 58-1).

