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Abstract. A termination preserving supercompiler for a call-by-value
language sometimes fails to remove intermediate structures that a super-
compiler for a call-by-name language would remove. This discrepancy in
power stems from the fact that many function bodies are either non-linear
in use of an important variable or often start with a pattern match on
their first argument and are therefore not strict in all their arguments. As
a consequence, intermediate structures are left in the output program,
making it slower. We present a revised supercompilation algorithm for
a call-by-value language that propagates let-bindings into case-branches
and uses termination analysis to remove dead code. This allows the algo-
rithm to remove all intermediate structures for common examples where
previous algorithms for call-by-value languages had to leave the interme-
diate structures in place.

1 Introduction

Intermediate lists in functional programs allows the programmer to write clear
and concise programs, but carry a run time cost since list cells need to be both
allocated and garbage collected. Much research has been conducted on automatic
program transformations that remove these intermediate structures, both for
lazy and strict languages [1,2,3,4].

A common pattern that appears both in input programs and during su-
percompilation is a let-expression where the body is a case-expression: letx =
e in case e′ of {pi → ei}. A supercompiler for a strict language is only allowed to
substitute e for x if we know that x is strict in the case-expression, and for prag-
matic and proof technical reasons x must also be linear in the case-expression.
As expected, it is quite easy to define functions that do not fulfill both of these
requirements, or functions that are complex enough to fool the analyses used by
the supercompiler. A standard example of such a function is zip.

If the supercompiler instead propagates let-expressions into the branches of
case-expressions it simplifies the job for the analyses since they no longer need to
account for different behaviours in different branches. Not only does this mod-
ification increase the precision of the analyses, but it also allows our improved
supercompiler to remove more constructions that cause memory allocations. The
propagation of let-expressions is orthogonal to the amount of information prop-
agated, so it works for both positive [2] and perfect supercompilation [5]. We
illustrate the increased strength through the following example:
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zip (map f1 xs) (map f2 ys)

Its generalization to tree-like structures is also of interest:

zipT (mapT f3 t1) (mapT f4 t2)

These examples allow us to position supercompilation for a strict language
relative to other well-known program transformations that perform program
specialization and remove intermediate structures:

Shortcut deforestation [6] removes one of the intermediate lists in the first
example, but does not remove arbitrary algebraic data types.

Stream fusion [7] removes both the intermediate lists in the first example, but
does not remove arbitrary algebraic data types without manual extensions.

Positive supercompilation [2] for a strict language removes the first inter-
mediate structure in both examples, and for a lazy language it removes both
lists and both trees.

This paper presents one more step towards allowing the programmer to write
clear and concise code in strict languages while getting good performance. The
contributions of our work are:

– We provide a stronger algorithm for positive supercompilation in a strict
and pure functional language (Section 4).

– We extend the supercompiler with a termination test that enables some un-
used let-bindings to be removed even though they are not fully evaluated.
This feature is particularly beneficial in conjunction with the first contri-
bution, since pushing bindings into case branches tend to result in many
seemingly redundant let-expressions (Section 5).

– We prove the soundness of the algorithm in Section 6.

We start out with a step by step example where our improved supercom-
piler removes both intermediate lists for zip in Section 2 to give the reader an
intuitive feel for how the algorithm behaves. Our language of study is defined in
Section 3 followed by the technical contributions. We end with a discussion of
the performance of the algorithm in Section 7.

2 Examples

This section gives a walk-through of the transformation of zip for readers who are
already familiar with positive supercompilation for call-by-value [4]. For readers
who are not at all familiar with these techniques there are more examples of
step by step transformations in the work of Wadler [1] and Sørensen, Glück and
Jones [2].

Our first example is transformation of the standard function zip, which takes
two lists as parameters: zip (map f xs ′) (map g ys ′). The standard definitions of
map and zip are:
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map =λf xs. case xs of
[] → ys
(x : xs) → f x : map f xs

zip =λxs ys. case xs of
[] → []
(x ′ : xs ′) → case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

We start our transformation by allocating a new fresh function name (h0) to this
expression, inlining the body of zip, substituting map f xs ′ into the body of zip,
and putting map g ys ′ into a let-expression to preserve termination properties of
the program:

let ys = map g ys ′

in case map f xs ′ of
[] → []
(x ′ : xs ′) → case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

The key difference between this algorithm and our previous work is that it trans-
forms the case expression without touching the let-expression. After inlining the
body of map in the head of the case-expression and substituting the arguments
into the body the result becomes:

let ys = map g ys ′

in case ( case xs ′ of
[] → []
(z : zs) → f z : map f zs) of

[] → []
(x ′ : xs ′) → case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

Notice how the let-expression is still untouched by the transformation – this is
essential for the power of the transformation. We duplicate the let-expression
and the outer case in each of the inner case’s branches, using the expression in
the branches as the head of the outer case-expression:



Strengthening Supercompilation For Call-By-Value Languages 67

case xs ′ of
[] → let ys = map g ys ′

in case [] of
[] → []
(x ′ : xs ′) → case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

(z : zs) → let ys = map g ys ′

in case f z : map f zs of of
[] → []
(x ′ : xs ′) → case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

The case-expression in the first branch of the outermost case reduces to the
empty list, but the let-expression must remain or we might introduce accidental
termination in the program. The second branch is more interesting: we have
a known constructor in the head of the case-expression so we can perform the
reduction:

case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → let ys = map g ys ′

in let x ′ = f z , xs ′ = map f zs
in case ys of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

The first branch can either be left as is, or one can transform the let-expression
to get a new function that is isomorphic to map and a call to it. This is an
orthogonal problem to removing multiple intermediate structures however, and
we will not treat it further in this example. In Section 5 we show how to au-
tomatically remove superfluous let-expressions such as this through termination
analysis. The reduction of the case-expression in the second branch reveals that
the second branch is strict in ys, so ys will be evaluated, and the termination be-
havior will be the same even after performing the substitution. After performing
the substitution we have:

case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → let x ′ = f z , xs ′ = map f zs

in case map g ys ′ of
[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

We repeat inlining the body of map in the head of the inner case-expression and
substituting the arguments into the body which gives:



68 Peter A. Jonsson and Johan Nordlander

case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → let x ′ = f z , xs ′ = map f zs

in case ( case ys ′ of
[] → []
(z ′ : zs ′) → g z ′ : map g zs ′) of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

Once again we move the let-expression and the middle case into the branches of
the innermost case:

case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → case ys ′ of

[] → let x ′ = f z , xs ′ = map f zs
in case [] of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

(z ′ : zs ′) → let x ′ = f z , xs ′ = map f zs
in case g z ′ : map g zs ′ of

[] → []
(y ′ : ys ′) → (x ′, y ′) : zip xs ′ ys ′

The first branch reduces to the empty list but we have to preserve the let-
expression for termination purposes. Transforming the first branch is not going
to reveal anything interesting, so we leave that branch as is, but of course the
algorithm transforms that branch as well. The second branch is more interesting
since it has a known constructor in the head of a case-expression, so we perform
the reduction:

case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → case ys ′ of

[] → let x ′ = f z , xs ′ = map f zs in []
(z ′ : zs ′) → let x ′ = f z , xs ′ = map f zs

in (x ′, g z ′) : zip xs ′ (map g zs ′)

After the reduction it is clear that both x’ and xs’ are really strict, so it is safe
to substitute them:

case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → case ys ′ of

[] → let x ′ = f z , xs ′ = map f zs in []
(z ′ : zs ′) → (f z , g z ′) : zip (map f zs) (map g zs ′)

We notice a familiar expression in zip (map f zs) (map g zs ′), which is a renaming
of what we started with, and fold here. This gives a new function h0 and a call
to that function as a final result:
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letrec h0 = λ f xs ′ g ys ′.
case xs ′ of
[] → let ys = map g ys ′ in []
(z : zs) → case ys ′ of

[] → let x ′ = f z , xs ′ = map f zs in []
(z ′ : zs ′) → (f z , g z ′) : h0 f zs g zs ′

in h0 f xs ′ g ys ′

The new function h0 does not pass any intermediate lists for the common
case when both xs and ys are non-empty. If one of them is empty, it is necessary
to run map on the remaining part of the other list.

In the introduction we claimed that we can fuse both intermediate lists and
both intermediate trees when zipping a list or a tree. The second example requires
some new definitions of map and zip over a simple tree datatype:

data Tree a = Node (Tree a) a (Tree a) | Empty

mapT = λf xs. case xs of
Empty → Empty
Node l a r → Node (mapT f l) (f a) (mapT f r)

zipT = λxs ys.
case xs of

Empty → Empty
Node l a r →

case ys of
Empty → Empty
Node l ′ a ′ r ′ → Node (zipT l l ′) (a, a ′) (zipT r r ′)

We transform the expression zipT (mapT f xs) (mapT g ys), which applies f
to the first tree, g to the second tree and create a final tree whose nodes consists of
pairs of the data from the two intermediate trees. We start our transformation by
allocating a new fresh function name (h1) and repeat many of the transformation
steps that we just saw for the list case. The end result is:

letrec h1 = λ f xs g ys.
case xs of
Empty → let ys ′ = mapT g ys in Empty
Node l a r →

case ys of
Empty → let l1 = mapT f l , a1 = f a

r1 = mapT f r in Empty
Node l ′ a ′ r ′ → Node (h1 f l g l ′) (f a, g a ′) (h1 f r g r ′)

in h1 f xs g ys

The same result as in the list case: the new function h1 does not pass any
intermediate trees for the common case: when both xs and ys are non-empty. If
one of them is empty, it is necessary to run mapT on the remaining part of the
other tree. This example also highlights the need to discard unused let-bindings.
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The third example of how the new algorithm improves the strength of su-
percompilation for call-by-value languages is non-linear occurrences of variables,
such as in

let x = e in fst (x , x )

Our previous algorithm would separately transform e and fst (x, x) which
would result in let x = e ′ in x , where it is obvious that x is linear. Our improved
algorithm instead inlines fst without touching e:

let x = e in case (x , x ) of { (x , y) → x }

The algorithm continues to transform the case-expression giving a let-expression
that is linear in x: let x = e in x . This expression can be transformed to e and
the supercompiler can continue to transform e, having eliminated the entire let-
expression in the initial program.

3 Language

Our language of study is a strict, higher-order, functional language with let-
bindings and case-expressions. Its syntax for expressions and values is shown in
Figure 1.

Expressions

e, f ::= x | g | k e | f e | λx.e | case e of {ki xi → ei} | letx = e in f
| letrec g = v in e

Values

v ::= λx.e | k v

Fig. 1. The language

Let X be an enumerable set of variables ranged over by x and K a set of
constructor symbols ranged over by k. Let g range over an enumerable set of
defined names and let G be a given set of recursive definitions of the form (g, v).

We abbreviate a list of expressions e1 . . . en as e, and a list of variables
x1 . . . xn as x. We denote the set of ordered free variables of an expression e
by fv(e), and the function names by fn(e).

A program is an expression with no free variables and all function names
defined in G. The intended operational semantics is given in Figure 2, where
[e/x]e′ is the capture-free substitution of expressions e for variables x in e′.

A reduction context E is a term containing a single hole [ ], which indicates
the next expression to be reduced. The expression E〈e〉 is the term obtained by



Strengthening Supercompilation For Call-By-Value Languages 71

Reduction contexts

E ::= [ ] | E e | (λx.e) E | k E | case E of {pi → ei} | letx = E in e

Evaluation relation

E〈g〉 7→ E〈v〉 (Global)
if (g, v) ∈ G

E〈(λx.e) v〉 7→ E〈[v/x]e〉 (App)
E〈letx = v in e〉 7→ E〈[v/x]e〉 (Let)
E〈letrec g = v in f〉 7→ E〈[letrec g = v in v/g]f〉 (Letrec)
E〈case kj v of {ki xi → ei}〉 7→ E〈[v/xj ]ej〉 (KCase)

Fig. 2. Reduction semantics

replacing the hole in E with e. E denotes a list of terms with just a single hole,
evaluated from left to right.

If a free variable appears no more than once in a term, that term is said to
be linear with respect to that variable. Like Wadler [1], we extend the definition
slightly for linear case expressions: no variable may appear in both the scrutinee
and a branch, although a variable may appear in more than one branch.

4 Positive Supercompilation

This section presents an algorithm for positive supercompilation for a higher-
order call-by-value language, which removes more intermediate structures than
previous work [4].

Our supercompiler is defined as a set of rewrite rules that pattern-match
on expressions. This algorithm is called the driving algorithm, and is defined
in Figure 3. Three additional parameters appear as subscripts to the rewrite
rules: a memoization list ρ, a driving context R, and an ordered set B of expres-
sions bound to variables (x1 = e1, x2 = e2, . . .). We use the short-hand notation
let B in e for let x1 = e1 in let x2 = e2 in .. in e. The memoization list holds in-
formation about expressions already traversed and is explained more in detail in
Section 4.1. An important detail is that our driving algorithm immediately per-
forms the program extraction instead of producing a process tree. The driving
context R is an evaluation context for a call-by-name language:

R ::=[ ] | R e | caseR of {pi → ei}

An expression e is strict with regards to a variable x if it eventually evalu-
ates x; in other words, if e 7→ . . . 7→ E〈x〉. Such information is not decidable in
general, although call-by-value semantics allows for reasonably tight approxima-
tions. One such approximation is given in Figure 4, where the strict variables
of an expression e are defined as all free variables of e except those that only



72 Peter A. Jonsson and Johan Nordlander

DJxK[],B,G,ρ = letDJBK[],∅,G,ρ inx (R1)
DJgKR,B,G,ρ = Dapp(g)R,B,G,ρ (R2)
DJk eK[],B,G,ρ = letDJBK[],∅,G,ρ in kDJeK[],∅,G,ρ (R3)
DJx eKR,B,G,ρ = letDJBK[],∅,G,ρ inR〈xDJeK[],∅,G,ρ〉 (R4)
DJλx.eK[],B,G,ρ = (λx.DJeK[],B,G,ρ) (R5)
DJ(λx.f) eKR,B,G,ρ = DJletx = e in fKR,B,G,ρ (R6)
DJe e′KR,B,G,ρ = DJeKR〈[] e′〉,B,G,ρ (R7)
DJletx = v in fKR,B,G,ρ = DJletB inR〈[v/x]f〉K[],∅,G,ρ (R8)
DJletx = y in fKR,B,G,ρ = DJletB inR〈[y/x]f〉K[],∅,G,ρ (R9)
DJletx = e in fKR,B,G,ρ = DJletB inR〈[e/x]f〉K[],∅,G,ρ, if x ∈ strict(f) (R10)

and x ∈ linear(f)
DJR〈f〉K[],B⊕x=e,G,ρ, otherwise

DJletrec g = v in eKR,B,G,ρ = letrec g = v in e′, if g ∈ fn(e′) (R11)
e′, otherwise
where e′ = DJletB inR〈e〉K[],∅,G′,ρ

G′ = G ∪ (g, v)
DJcasex of {ki xi → ei}KR,B,G,ρ = letDJB|xK[],∅,G,ρ (R12)

in casex of {
ki xi → DJ[ki xi/x]letB\x inR〈ei〉K[],∅,G,ρ

}
DJcase kj e of {ki xi → ei}KR,B,G,ρ= DJletB inR〈letxj = e in ej〉K[],∅,G,ρ (R13)
DJcasex e of {ki xi → ei}KR,B,G,ρ = letDJB|(fv(e) ∪ {x})K[],∅,G,ρ (R14)

in casexDJeK[],∅,G,ρ of {
ki xi → DJletB\(fv(e) ∪ {x}) inR〈ei〉K[],∅,G,ρ

}
DJcase e of {ki xi → ei}KR,B,G,ρ = DJeKR〈case []of {ki xi→ei}〉,B,G,ρ (R15)

Fig. 3. Driving algorithm

appear under a lambda or not inside all branches of a case. Our experience is
that this approximation is sufficient in practice.

The rules of the driving algorithm are ordered; i.e., all rules must be tried in
the order they appear. Rule R7 and rule R15 are the default fallback cases which
extend the given driving context R and zoom in on the next expression to drive.
Notice how rule R8 recursively applies the driving algorithm to the entire new
term letB inR〈[v/x]f〉, forcing a re-traversal of the new term with the hope of
further reductions.

Some expressions should be handled differently depending on their context.
If a constructor application appears in an empty context, there is not much we
can do except to drive the argument expressions (rule R3). On the other hand, if
the application occurs at the head of a case expression, we may choose a branch
based on the constructor and leave the arguments unevaluated in the hope of
finding fold opportunities further down the syntax tree (rule R13).

Rule R12 and rule R14 uses some new notation: B|x is the smallest prefix
of B that is necessary to define x and B\x is the largest suffix not necessary to
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strict(x) = {x}
strict(g) = ∅
strict(k e) = strict(e)
strict(λx.e) = ∅
strict(f e) = strict(f) ∪ strict(e)
strict(letx = e in f) = strict(e) ∪ (strict(f)\{x})
strict(letrec g = v in f) = strict(f)
strict(case e of {ki xi → ei}) = strict(e) ∪ (

⋂
(strict(ei)\xi))

Fig. 4. The strict variables of an expression

define x. Rule R10 uses ⊕ which we define as:

(B, y = e)⊕ x = e′
def
= (B ⊕ x = e′), y = e if y /∈ fv(e′)
def
= (B, y = e, x = e′) otherwise

The key idea in this improved supercompilation algorithm is to float let-
expressions into the branches of case-expressions. We accomplish this by adding
the bound expressions from let-expressions to our binding set B in rule R10.
We make sure that we do not change the order between definition and usage
of variables in rule R8 by extracting the necessary bindings outside of the case-
expression, and the remaining independent bindings are brought into all the
branches along with the surrounding context R.

The algorithm is allowed to move let-expressions into case-branches since
that transformation only changes the evaluation order, and non-termination is
the only effect present in our language.

4.1 Application Rule

Our extension does not require any major changes to the folding mechanism
that supercompilers use to ensure termination. Since our goal is not to study
termination properties of supercompilers we present a simplified version of the
folding mechanism which does not guarantee termination, but guarantees that if
the algorithm terminates the output is correct. The standard techniques [8,9,4]
for ensuring termination can be used with our extension.

In the driving algorithm rule R2 refer to Dapp( ), defined in Figure 5. Dapp( )
can be inlined in the definition of the driving algorithm, it is merely given a sep-
arate name for improved clarity of the presentation. Figure 5 contains some new
notation: we use σ for a variable to variable substitution and = for syntactical
equivalence of expressions.

The driving algorithm keeps a record of previously encountered applications
in the memoization list ρ; whenever it detects an expression that is equivalent (up
to renaming of variables) to a previous expression, the algorithm creates a new
recursive function hn for some n. Whenever an expression from the memoization
list is encountered, a call to hn is inserted.
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Dapp(g)R,B,G,ρ = hx if ∃(h, t)∈ρ . σt = letB inR〈g〉 (1)
where x = σ(fv(t))

Dapp(g)R,B,G,ρ = letrech = λx.e′ inhx if h ∈ fn(e′) (2a)
e′ otherwise (2b)

where (g, v) ∈ G,
e′ = DJR〈v〉K[],B,G,ρ′ ,
x = fv(letB inR〈g〉),
ρ′ = ρ ∪ (h, letB inR〈g〉) and
h fresh

Fig. 5. Driving of applications

5 Removing Unnecessary Traversals

The first example in Section 2 showed that there might be let-expressions in
case-branches where the computed results are never used in the branch. This
gives worse runtime performance than necessary since more intermediate results
have to be computed, and also increases the compilation time since there are
more expressions to transform. The only reason to have these let-expressions is
to preserve the termination properties of the input program.

We could remove these superfluous let-expressions if we knew that they were
terminating, something that would save both transformation time and execution
time. It is clear that termination is undecidable in general, but our experience
is that the functions that appear in practice are often recursive over the input
structure. Functions with this property are quite well suited for termination
analysis, for example the size-change principle [10,11].

Given a function terminates(e) that returns true if the expression e termi-
nates, we can augment the let-rule (R10) to incorporate the termination in-
formation and discard such expressions, shown in Figure 6. This allows the
supercompiler to discard unused expressions, i.e dead code, which saves both
transformation time and runtime.

DJletx = e in fKR,B,G,ρ = DJletB inR〈f〉K[],∅,G,ρ if terminates(e) and x /∈ fv(f)
DJletB inR〈[e/x]f〉K[],∅,G,ρ if x ∈ strict(f) and x ∈ linear(f)
DJR〈f〉K[],B⊕x=e,G,ρ otherwise

Fig. 6. Extended Let-rule (R10)

Since we leave the choice of termination analysis open, it is hard to discuss
scalability in general. The size-change principle has been used with good results
in partial evaluation of large logic programs [12] and there are also polynomial
time algorithms for approximating termination [13].
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6 Correctness

We need a class of expressions w that is essentially the union of the expressions
on weak head normal form (whnf) and expressions where the redex contains a
free variable, a:

a ::= x | a e
w ::= λx.e | k e | a

Lemma 1 (Totality). Let R〈e〉 be an expression such that

– R〈e〉 is well-typed
– if R 6= [ ] then e 6= w

then DJeKR,B,G,ρ is matched by a unique rule in Figure 3.

Proof. Follows the structure of the proof by Jonsson and Nordlander [14].

To prove that the algorithm does not alter the semantics we use the improve-
ment theory [15]. We define the standard notions of operational approximation
and equivalence and introduce a general context C which has zero or more holes
in the place of some subexpressions.

Definition 1 (Operational Approximation and Equivalence).

– e operationally approximates e’, e@
˜
e′, if for all contexts C such that C[e]

and C[e’] are closed, if evaluation of C[e] terminates then so does evaluation
of C[e’].

– e is operationally equivalent to e’, e ∼= e′, if e@
˜
e′ and e′@

˜
e

We use Sands’s definitions for improvement and strong improvement:

Definition 2 (Improvement, Strong Improvement).

– e is improved by e’, e D e′, if for all contexts C such that C[e], C[e’] are
closed, if computation of C[e] terminates using n calls to named functions,
then computation of C[e’] also terminates, and uses no more than n calls to
named functions.

– e is strongly improved by e’, e Ds e′, iff e D e′ and e ∼= e′.

which allows us to state the final theorem:

Theorem 1 (Total Correctness). Let R〈e〉 be an expression, and ρ an envi-
ronment such that

– the range of ρ contains only closed expressions, and
– fv(R〈e〉) ∩ dom(ρ) = ∅, and
– if R 6= [ ] then e 6= w
– the supercompiler DJeKR,B,G,ρ terminates

then R〈e〉 Ds ρ(DJeKR,B,G,ρ).

Proof. Similar to the total correctness proof by Jonsson and Nordlander [14].

Recall the simplified algorithm we have presented preserves the semantics
only if it terminates; however, termination of the supercompiler can be recovered
using a similar Dapp( ) as we did in our previous work [4].
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7 Performance and Limitations

There are two aspects of performance that are interesting to the end user: how
long the optimization takes; and how much faster the optimized program is.

The work on supercompiling Haskell by Mitchell and Runciman [9] shows
that some problems remain for supercompiling large Haskell programs. These
problems are mainly related to speed, both of the compiler and of the trans-
formed program. When they profiled their supercompiler they found that the
majority of the time was spent in the homeomorphic embedding test, the test
which is used to ensure termination.

Our preliminary measurements show the same thing: a large proportion of
the time spent on supercompiling a program is spent testing for non-termination
of the supercompiler. This paper presents a stronger supercompiler at the cost
of larger expressions to test for the homeomorphic embedding. We estimate that
our current work ends up somewhere between Supero and our previous work
with respect to transformation time since we are testing smaller expressions
than Supero, at the expense of runtime performance.

The complexity of the homeomorphic embedding has been investigated sep-
arately by Narendran and Stillman [16] and they give an algorithm that takes
two terms e and f and decides if there is a risk of non-termination in time
O(size(e)× size(f)).

For the second dimension: it is well known that programs with many inter-
mediate lists have worse performance than their corresponding listless versions
[6]. We have shown that the output from our supercompiler does not contain
intermediate structures by manual transformations in Section 2. It is reasonable
to conclude that these programs would perform better in a microbenchmark. We
leave the question of performance of large real world programs open.

A limitation of our work is that there are still examples that our algorithm
does not give the desired output for. Given let x = (λy .y) 1 in (x , x ) a human
can see that the result after transformation should be (1, 1), but our super-
compiler will produce let x = 1 in (x , x ). Mitchell [17][Sec 4.2.2] has a strategy
to handle this, but we have not been able to incorporate his solution without
severely increasing the amount of testing for non-termination done with the
homeomorphic embedding. The reason we can not transform (λy .y) 1 in iso-
lation and then substitute the result is that the result might contain freshly
generated function names, which might cause the supercompiler to loop.

8 Related Work

8.1 Deforestation

Deforestation is a slightly weaker transformation than supercompilation [18].
Deforestation algorithms for call-by-name languages can remove all intermediate
structures from the examples we outlined in Section 1.
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Deforestation was pioneered by Wadler [1] for a first order language more
than fifteen years ago. The initial deforestation had support for higher order
macros which are incapable of fully emulating higher order functions.

Marlow and Wadler [19] addressed the restriction to a first-order language
when they presented a deforestation algorithm for a higher order language. This
work was refined in Marlow’s [20] dissertation, where he also related deforestation
to the cut-elimination principle of logic. Chin [21] has also generalised Wadler’s
deforestation to higher-order functional programs by using syntactic properties
to decide which terms can be fused.

Both Hamilton [22] and Marlow [20] have proven that their deforestation
algorithms terminate. More recent work by Hamilton [23] extends deforestation
to handle a wider range of functions, with an easy-to-recognise treeless form,
giving more transparency for the programmer.

Alimarine and Smetsers [24] have improved the producer and consumer anal-
yses in Chin’s [21] algorithm by basing them on semantics rather than syntax.
They show that their algorithm can remove much of the overhead introduced
from generic programming [25].

8.2 Supercompilation

Except for our previous work [4], the work on supercompilation has been for call-
by-name semantics. All call-by-name supercompilers succeed on the examples we
outlined in Section 1, and are very close algorithmically to our current work.

Supercompilation [26,27,28,29] removes intermediate structures and achieves
partial evaluation as well as some other optimisations. Scp4 [30] is the most
well-known implementation from this line of work.

The positive supercompiler [2] is a variant which only propagates positive
information, such as equalities. The propagation is done by unification and the
work highlights how similar deforestation and positive supercompilation really
are. We have previously investigated the theoretical foundations for positive
supercompilation for strict languages [4]. Narrowing-driven partial evaluation
[31,32] is the functional logic programming equivalent of positive supercompi-
lation but formulated as a term rewriting system. They also deal with non-
determinism from backtracking, which makes the algorithm more complicated.

Strengthening the information propagation mechanism to propagate not only
positive but also negative information yields perfect supercompilation [5,33,34].
Negative information is the opposite of positive information – inequalities. These
inequalities can for example be used to prune branches that we can be certain
are not taken in case-expressions.

More recently, Mitchell and Runciman [9] have worked on supercompiling
Haskell. Their algorithm is closely related to our supercompiler, but their work
is limited to call-by-name. They report runtime reductions of up to 55% when
their supercompiler is used in conjunction with GHC.
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8.3 Short Cut Fusion

Short cut deforestation [35,6] takes a different approach to deforestation, sacri-
ficing some generality by only working on lists.

The idea is that the constructors Nil and Cons can be replaced by a foldr
consumer, and a special function build is used to allow the transformation to
recognize the producer and enforce the type requirement. Lists using build/foldr
can easily be removed with the foldr/build rule: foldr f c (build g) = g f c.

This forces the programmer or compiler writer to make sure list-traversing
functions are written using build and foldr, thereby cluttering the code with
information for the optimiser and making it harder to read and understand for
humans.

Takano and Meijer [36] generalized short cut deforestation to work for any
algebraic datatype through the acid rain theorem. Ghani and Johann [37] have
also generalized the foldr/build rule to a fold/superbuild rule that can eliminate
intermediate structures of inductive types without disturbing the contexts in
which they are situated.

Launchbury and Sheard [38] worked on automatically transforming programs
into suitable form for shortcut deforestation. Onoue et al. [39] showed an im-
plementation of the acid rain theorem for Gofer where they could automatically
transform recursive functions into a form suitable for shortcut fusion.

Type-inference can be used to transform the producer of lists into the ab-
stracted form required by short cut deforestation, and this is exactly what Chitil
[40] does. Given a type-inference algorithm which infers the most general type,
Chitil is able to determine the list constructors that need to be replaced.

Takano and Meijer [36] noted that the foldr/build rule for short cut deforesta-
tion had a dual. This is the destroy/unfoldr rule used by Svenningsson [41] which
has some interesting properties. The method can remove all argument lists from
a function which consumes more than one list, addressing one of the main crit-
icisms against the foldr/build rule. The technique can also remove intermediate
lists from functions which consume their lists using accumulating parameters, a
known problematic case that most techniques can not handle.

The method is simple, and can be implemented the same way as short cut
deforestation. It still suffers from the drawback that the programmer or compiler
writer has to make sure the list traversing functions are written using destroy
and unfoldr.

In more recent work Coutts et al. [7] have extended these techniques to
work on functions that handle nested lists, list comprehensions and filter-like
functions.

9 Conclusions

We have presented an improved supercompilation algorithm for a higher-order
call-by-value language. Our extension is orthogonal to the information propaga-
tion by the algorithm. Through examples we have shown that the algorithm can
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remove multiple intermediate structures, which previous algorithms could not,
such as the zip examples in Section 2.

9.1 Future Work

We are currently working on improving the scalability of supercompilation for
real programs. MLTon [42] has successfully performed whole program compila-
tion of programs up to 100 000 lines, which suggests that any bottlenecks should
occur in the supercompiler, not the other parts of the compiler.

An anonymous referee suggested performing on-demand termination analysis
on already simplified terms. We are looking into this possibility. Another anony-
mous referee suggested a characterization, such as the treeless form by Wadler
[1], of input terms that would guarantee termination of the supercompiler as
specified in this paper.
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