
Supercompilation and the Reduceron

Jason S. Reich, Matthew Naylor and Colin Runciman

Department of Computer Science, University of York
{jason,mfn,colin}@cs.york.ac.uk

Abstract. This paper explores some of the performance-enhancing fea-
tures of supercompilation in the context of the Reduceron — a special-
purpose graph-reduction machine. Two small examples are discussed in
detail, highlighting areas where the two technologies interact. A strategy
is introduced for countering a situation where supercompilation adversely
affects Reduceron execution time. Performance results and other metrics
are presented across a range of nineteen benchmarks highlighting the
synergistic properties of supercompilation on the Reduceron. This paper
represents work in progress.

1 Introduction

Functional programming is a distinctive paradigm that has scope for exploiting
non-standard technologies at every stage of computation. Supercompilation and
the Reduceron are two such technologies.

Supercompilation [1,2] is a metaprogramming technique that, at compile-time,
evaluates (drives) programs until an unknown is required and then proceeds by
case analysis (residuates). Among other benefits, it can remove intermediate data
structures and specialise higher order functions, with corresponding performance
gains at execution time.

The Reduceron is an FPGA-based soft processor for executing lazy functional
programs by graph reduction [3,4]. The special-purpose processor can perform
in parallel many of the steps required for each reduction, whereas conventional
architectures need to perform these steps serially.

Does a combination of these technologies lead to further improvements in perfor-
mance? Are these techniques conflicting, compatible or even mutually beneficial?
In this paper, we discuss how the two may interact and present preliminary find-
ings from a prototype supercompiler for the Reduceron source language.

2 Our Source Language

Our source language [5] is close to subsets of both Haskell 98 [6] and Clean [7]. It
supports algebraic data types, uniform pattern matching by construction, local
variable bindings, and various primitive integer operations.



160 Jason S. Reich, Matthew Naylor and Colin Runciman

prog := f vs = x

exp := v (variables)

| c (constructors)

| f (functions)

| n (integers)

| x xs (applications)

| case x of c vs → x

| let v = x in y

Fig. 1. Abstract syntax for our source language.

Abstract syntax for our source language is given in Figure 1. In addition to the
annotated symbols, x and y range over expressions. Overlining and pluralisa-
tion indicate sequences of productions. For example vs represents a sequence of
variable names. All programs contain a function named main of arity zero.

Listing 1 shows an encoding of a program in our source language. This program
(somewhat inefficiently) doubles each element in a range, calculates the sum and
prints the result.

The basic compiler (before the introduction of supercompilation) first reduces
all pattern matching to combinations of one-level case distinctions. A case-
elimination phase then translates algebraic data constructors and case expres-
sions to functions and function applications respectively, using a variation of the
Scott encoding, e.g. after case elimination our range function is as displayed in
Listing 2. In every function body, a bottom-up traversal inlines saturated ap-
plications of non-primitive functions. Finally, the compiler generates a compact
encoding of function body.

The encoding phase must take into account the design parameters of the Reduc-
eron. Encoded forms of function bodies are constrained by limits on the size of
the top-level spine, the number and size of nested applications, and the number
of case-table arguments in an application. Encoded bodies are split if necessary,
with the introduction of auxiliary combinators.

It should be stressed that the compiler is not generating circuitry for the FPGA.
Rather, it is generating a representation of the program, suitable for execution
on a template instantiation machine [8]. In this case, the template instantiation
machine, the Reduceron, has been realised on an FPGA.



Supercompilation and the Reduceron 161

Listing 1. An example program, in our source language.

{

foldl f z xs = case xs of {

Nil -> z;

Cons y ys -> foldl f (f z y) ys;

};

map f xs = case xs of {

Nil -> Nil;

Cons y ys -> Cons (f y) (map f ys);

};

plus x y = (+) x y;

sum = foldl plus 0;

double x = (+) x x;

sumDouble xs = sum (map double xs);

range x y = case (<=) x y of {

True -> Cons x (range ((+) x 1) y);

False -> Nil;

};

main = emitInt (sumDouble (range 0 10000)) 0;

}

3 The Reduceron Architecture

The Reduceron features broad memory channels to ‘widen the von Neumann
bottleneck.’ [3] Many of the operations required to perform each graph reduction
step are simultaneously performed in a single clock cycle.

Instantiation of a function body takes dn/2e clock ticks, where n is the number of
applications in the body. Establishing the environment for function applications,
updating the heap-graph to prevent repeated evaluations and applying primitive
functions each take just one clock cycle. Dynamically maintained sharing infor-
mation allows the Reduceron to avoid a high proportion of redundant updates
where no sharing can occur. Constructor reductions (selection of the appropriate
case alternative function from a case table) take place in zero clock cycles.

Listing 3 shows the evaluation of range 0 10 to head normal form. Each re-
duction step is annotated with the operation that is being performed and how
many cycles are required. This example takes four clock cycles, under the scheme
outlined so far.



162 Jason S. Reich, Matthew Naylor and Colin Runciman

Listing 2. range function after case elimination.

range x y = (<=) x y [range#1,range #2] x y;

range#1 alts x y = Nil;

range#2 alts x y = Cons x (range ((+) x 1) y);

Listing 3. Reduction of range 0 10 without PRS.

range 0 10

= { Instantiate function body (1 cycle) }

(<=) 0 10 [range#1,range #2] 0 10

= { Primitive application (1 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range#2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

4 Primitive Redex Speculation

If primitive applications in body have fully evaluated arguments at instantia-
tion time, the Reduceron can evaluate them speculatively during instantiation.
Primitive redexes need not be constructed in memory, nor fetched again when
needed. Even if the result of a primitive redex is not needed, reducing it is no
more costly than constructing it.

Once again consider the reduction of the expression range 0 10, now with prim-
itive redex speculation (PRS) enabled (Listing 4). One clock cycle is avoided for
the comparison. Further clock cycles will be saved if the tail of the result is
needed, as the addition to form the lower bound of the range has also been
speculatively evaluated.

The beneficial effect of PRS is quite marked. For the example program in List-
ing 1, the Reduceron takes 230,029 clock cycles to execute without PRS. With
PRS enabled the Reduceron only takes 150,024 clock cycles, a 35% reduction.

However, the number of PRS reductions in each instantiation is limited by a
Reduceron design parameter. Currently, this limit is two.

5 Benchmark Programs

A selection of nineteen programs are used to test and benchmark the Reduc-
eron platform. These programs range from small, toy examples that demon-
strate specific effects, such as the sum– series, to significant computations like
Knuthbendix.



Supercompilation and the Reduceron 163

Listing 4. Reduction of range 0 10 with PRS.

range 0 10

= { Instantiate function body (1 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range#2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range 1 10)

These programs are described below in terms of their purpose, characteristics and
code size. Line counts are for sources including all required auxiliary functions.

Adjoxo An adjudicator for the game noughts and crosses, a.k.a. tic-tac-toe.
The input is a game position, and the output is one of the three values —
Win, Draw or Loss — indicating the outcome with best play for each of the
players whose turn it might be. The method is the usual minimax recursive
evaluation of completed game trees. (106 lines)

Braun A Braun tree is a balanced binary tree offering an efficient yet simple
implementation of flexible arrays. The program tests the property that con-
verting a list to a Braun tree and back again is equivalent to the identity
function. (51 lines)

Cichelli Finds a perfect hash function for Haskell keywords [9]. It uses a back-
tracking search to find an assignment of natural-number values to each letter
that starts or ends a keyword such that hash values for keywords, computed
as start-value + end-value + length, are unique and occupy a small integer
range without gaps. (200 lines)

Clausify Puts propositional formulae in clausal form using a multi-stage trans-
formation of formula-trees [9]. Almost a purely symbolic application, with
hardly any arithmetic. (131 lines)

Fib Computes the Nth number in the fibonacci sequence using a simple but
naive doubly-recursive function definition. A purely arithmetic program in-
volving no data structures at all. (10 lines)

Knuthbendix The Knuth-Bendix completion method tries to derive a con-
vergent term-rewriting system for a given equational theory and symbol-
weighting scheme. It is a typical symbolic computing application from com-
puter algebra. The example input used in the program gives group-theoretic
axioms from which ten rewriting rules are derived. (533 lines)

MSS Computes the maximum segment sum of a list of integers. Works by
dividing the input list into all sub-lists, computing the sum of each, and
returning the maximum. (47 lines)

Mate Solves chess end-game problems of the form “P to move and mate in
N” [9]. The method is brute-force search in an explicit AND-OR game tree
developing the given position to depth 2N − 1. Boards are represented by
a square-piece assocation list for each player, where squares are coded as



164 Jason S. Reich, Matthew Naylor and Colin Runciman

rank-file numeric pairs, so there is a fair amount of primitive arithmetic and
comparison. (393 lines)

OrdList Checks the property that insertion of a number into an ordered list
of numbers results in a list that is still ordered. Numbers are represented as
Peano numerals, so this is a purely symbolic program. (46 lines)

Parts Computes a celebrated number-theoretic function, the number of parti-
tions of n, where a partition is a bag of positive integers that sum to n. There
is a sophisticated closed formula for this number, but the method here is to
list and count partitions explicitly. (54 lines)

PermSort Enumerates the permutations of a list of numbers, and returns the
first ordered permutation. (39 lines)

Queens Solves a programming problem made famous by Wirth: place N queens
on an N × N chess board so that no two queens occupy a common rank,
file or diagonal [9]. The solution involves backtracking, list processing and
an inner recursive loop that tests the safety of each candidate position for a
new queen by primitive arithmetic comparisons with the coded positions of
queens already in place. (47 lines)

Queens2 A purely symbolic solution to the N -queens problem. Represents the
board as a list of lists. Places a queen on one row at a time, maintaining a
grid of threatened squares, and backtracks if a queen cannot be placed. (62
lines)

Sudoku A Sudoku solver due to Richard Bird [10]. Fills the blank cells on a
Sudoku board with valid digits, pruning many possible choices that cannot
possibly lead to a solution. (209 lines)

Taut A tautology checking program based on an example from Hutton’s book.
The method is a brute-force evaluation for all possible boolean assignments
to variables. (95 lines)

While A structural operational semantics of Nielson and Nielson’s While lan-
guage [11] applied to a program that computes the number of divisors of
given integer. (96 lines)

sumDouble Computes
∑10000

i=0 2i by generating the list of the numbers between
0 and 10,000, doubling each element and then computing the sum using
the higher-order function, foldl. Contains intermediate data structures and
primitive operations. The program in Listing 1. (20 lines)

sumSquares Computes
∑100

i=0 i
2. This is done in a similar fashion to the previ-

ous example. The square function consists of replicating its input n, n times
and summing the result using foldl. Contains intermediate data structures,
primitive operations and nested loops. (23 lines)

sumSumEnum Computes
∑100

i=0

∑i
j=0 j by generating the list of the numbers

between 0 and 100, mapping a function, sumEnum, over the list and summing
the resulting list. The sumEnum function sums the numbers between 0 and
its input. Contains intermediate data structures, primitive operations and
nested loops. (22 lines)



Supercompilation and the Reduceron 165

Listing 5. A supercompiled form of sumDouble.

sumDouble = sumDoubleAc 0;

sumDoubleAc z xs = xs [sumDoubleAc #1, sumDoubleAc #2] z;

sumDoubleAc #1 y ys alts z = sumDoubleAc ((+) z ((+) y y)) ys;

sumDoubleAc #2 alts z = z;

6 A Synergistic Effect of Supercompilation

The basic Reduceron compiler currently performs very little optimisation. We
are developing a supercompiler targeted at the Reduceron platform. The starting
point for our current prototype was a previous positive supercompiler for a core
functional language by Mitchell [12].

Mitchell’s design inserted a supercompilation phase between core generation and
compilation by the optimising Glasgow Haskell Compiler (GHC). In all but one
of the published benchmarks, Mitchell’s supercompiler demonstrated at least
equal and often significantly improved performance when compared with GHC
alone.

One reason for the improvement is that supercompilation fuses away intermedi-
ate data structures. In its original form, the function sumDouble (Listing 1) maps
double over its list input, only to apply foldl plus to the newly constructed
list to calculate the sum. The supercompiler fuses this composition to a residual
function that does not produce the intermediate list but performs the double

operation as it sums. For both conventional implementations and the Reduceron,
fewer reductions are needed to construct and deconstruct data structures.

Some effects of supercompilation particularly benefit the features of the Reduc-
eron architecture. For example, the program in Listing 1 cannot, as it stands,
benefit from PRS during the sum function because the primitive addition is
not apparent in the body of the higher-order foldl. However, if supercompiled,
foldl plus is specialised to a first-order equivalent. A considerable reduction
in clock cycles is obtained because PRS now applies.

The original program evaluates 20,003 expressions by PRS, compared with the
29,995 for the supercompiled program. While it is possible in some cases, for
this example, no more primitive reductions were performed overall than we per-
formed originally. A further performance gain achieved on top of the fusion
effects. Following supercompilation, the Reduceron takes 159,970 clock cycles to
execute the program in Listing 1 without PRS and only 39,996 clock cycles with
PRS. Compared with the original program executed without PRS, this is a 87%
performance increase.

Listing 5 shows the combined effects of supercompilation fusion and specialisa-
tion on sumDouble. In sumDoubleAc#1, the dependency of the outer addition
on the inner one means that PRS requires an extra clock cycle to evaluate the



166 Jason S. Reich, Matthew Naylor and Colin Runciman

Listing 6. Original and supercompiled piece safety in the n-queens problem.

and x y = case x of { True -> y; False -> False };

safe x d qs = case qs of {

Nil -> True;

Cons q l ->

and ((/=) x q) (

and ((/=) x ((+) q d)) (

and ((/=) x ((-) q d)) (

safe x ((+) d 1) l)));

};

safeSC x d qs = case qs of {

Nil -> True;

Cons q l ->

case (/=) x q of {

True ->

case (/=) x ((+) q d) of {

True ->

case (/=) x ((-) q d) of {

True -> safeSC x ((+) d 1) l;

False -> False

};

False -> False

};

False -> False

}

};

expression fully. However, overall cycles are still saved in comparison with the
reduction of a separate function application.

7 A Potentially Obstructing Effect of Supercompilation

There are circumstances where the process of supercompilation might impede
PRS. Consider Listing 6, an extract from the Queens example. The function
safe computes whether it is ‘safe’ to place a queen in rank x, at a distance of
d files away from the queens currently placed on the board. These queens are
specified by their rank positions in the list qs.

Listing 7 shows the original and supercompiled definitions following case elimina-
tion and inlining. Notice that in safe, all of the primitive reducible expressions
are in one case alternative. On the other hand, in the supercompiled version,
safeSC, the expressions are split over separate case alternatives, and therefore,
instantiations after Scott encoding.



Supercompilation and the Reduceron 167

Listing 7. Listing 6 after case elimination.

and v0 v1 = v0 [and#1,and #2] v1;

and#1 v0 v1 = False;

and#2 v0 v1 = v1;

safe v0 v1 v2 = v2 [safe#1,safe #2] v0 v1;

safe#1 v0 v1 v2 v3 v4 = let {

v5 = (+) v4 1;

v6 = (/=) v3 ((-) v0 v4);

v7 = (/=) v3 ((+) v0 v4);

v8 = (/=) v3 v0

} in v8 [and#1,and#2]

(v7 [and#1,and#2]

(v6 [and#1,and#2]

(v1 [safe#1,safe #2] v3 v5)));

safe#2 v0 v1 v2 = True;

safeSC v0 v1 v2 = v2 [safeSC#7,safeSC #8] v0 v1;

safeSC #1 v0 v1 v2 v3 = False;

safeSC #2 v0 v1 v2 v3

= let { v4 = (+) v2 1 } in v3 [safeSC#7,safeSC #8] v1 v4;

safeSC #3 v0 v1 v2 v3 v4 = False;

safeSC #4 v0 v1 v2 v3 v4

= (/=) v1 ((-) v2 v3) [safeSC#1,safeSC #2] v1 v3 v4;

safeSC #5 v0 v1 v2 v3 v4 = False;

safeSC #6 v0 v1 v2 v3 v4

= (/=) v1 ((+) v2 v3) [safeSC#3,safeSC #4] v1 v2 v3 v4;

safeSC #7 v0 v1 v2 v3 v4

= (/=) v3 v0 [safeSC#5,safeSC #6] v3 v0 v4 v1;

safeSC #8 v0 v1 v2 = True;

This leads to a situation where the execution of the original can speculatively
evaluate a number of expressions simultaneously, whereas safeSC evaluates them
separately at each function body instantiation.

To alleviate this issue, primitive expressions can be lifted as far as their variables
are bound. The lifting process can take into account the maximum number of
PRS reductions at instantiation and only lift to where there is spare capacity.

However, if we naively lift all primitive redex expressions, we may cause duplicate
computation to occur. The supercompiler is permitted to duplicate code as long
as it does not duplicate computation, under lazy evaluation. For example, our
supercompiler may replicate bindings from outside a case expression down each
case alternative. As only one alternative is evaluated, only one of the duplicate
bindings will be evaluated under both lazy and speculative evaluation.



168 Jason S. Reich, Matthew Naylor and Colin Runciman

Original Supercompiled SC + PRS lift

a b c d e f
(No PRS) (PRS) (No PRS) (PRS) (No PRS) (PRS)

Adjoxo 1.000 0.799 0.866 0.671 0.707 0.405
Braun 1.000 1.000 0.769 0.769 0.769 0.769
Chichelli 1.000 0.990 1.000 0.990 1.013 0.998
Clausify 1.000 1.000 1.050 1.050 1.051 0.951
Fib 1.000 0.445 1.000 0.445 0.907 0.353
KnuthBendix 1.000 0.900 0.896 0.833 0.876 0.779
MSS 1.000 0.864 0.995 0.858 0.997 0.861
Mate 1.000 0.867 0.912 0.838 0.916 0.827
OrdList 1.000 1.000 0.662 0.662 0.678 0.678
Parts 1.000 0.746 0.933 0.679 1.029 0.753
PermSort 1.000 0.962 0.861 0.861 0.759 0.727
Queens 1.000 0.421 0.850 0.489 0.811 0.325
Queens2 1.000 0.996 0.989 0.985 0.966 0.961
Sudoku 1.000 0.936 0.955 0.892 0.922 0.815
Taut 1.000 1.004 0.700 0.700 0.944 0.859
While 1.000 0.947 0.996 0.942 1.047 1.005
sumDouble 1.000 0.652 0.695 0.174 0.739 0.130
sumSquares 1.000 0.541 0.726 0.206 0.793 0.205
sumSumEnum 1.000 0.481 0.847 0.455 0.960 0.454

Geometric Mean 1.000 0.788 0.871 0.647 0.881 0.598

Table 1. Execution time as multiples of that for pipeline a, the program before
supercompilation executed without PRS. (Best results are in bold.)

However, if replicated primitive redexes are lifted above a case distinction, they
may be evaluated speculatively, taking away capacity that other primitive ex-
pressions could have used. A solution is to detect these replicated expressions
and merge them into a single binding.

Our original supercompiler worsened PRS-enabled results for Queens by 16%.
With the primitive redex lifting strategy applied, supercompilation improves
results by 33%.

8 Performance Results

8.1 Compared to without PRS and Supercompilation

Each example described in Section 5, is compiled with six variations of compi-
lation pipeline. These are; a) normal compilation, b) normal compilation with
PRS, c) supercompilation and normal compilation, d) supercompilation and nor-
mal compilation with PRS, e) supercompilation, primitive redex lift and normal



Supercompilation and the Reduceron 169

compilation, f) supercompilation, primitive redex lift and normal compilation
with PRS.

The compiled output is executed on a Reduceron simulator. The simulator re-
turns various profiling measurements such as total clock cycles, the number of
PRS evaluated expressions and the proportion of time spent on individual func-
tions and reduction operations. Table 1 presents the performance of our test
programs relative to that of pipeline a, the original program executed without
PRS.

PRS Only — Primitive redex speculation (pipeline b) shows an average perfor-
mance increase of 21%. All but four of the examples achieve some improvement.
The only example that suffers under PRS is Taut, likely due to the structure of
the program. The drop in performance is only very slight, however.

Supercompilation Only — Supercompilation (pipeline c) shows an average per-
formance boost of 13%. Only three examples do not benefit from supercompi-
lation. While we do not expect much improvement on Fib due to its simple
structure, the highly symbolic programs Chichelli and Clausify might have
shown some fusion.

Supercompilation and PRS — The combination of PRS and supercompilation
(pipeline d) largely gives results as expected (PRS factor × supercompilation fac-
tor) with a few notable exceptions. Adjoxo, Parts, sumDouble and sumSquares

all show better than expected performance, mainly for the reasons described
in Section 6. However, Queens and sumSumEnum show considerably worse than
expected performance, likely for the reasons outlined in Section 7.

Supercompilation, Lifting and PRS — The results of PRS, supercompilation and
primitive redex lifting (pipeline f) indicate that this strategy is effective. Every
program except for While performs better than the original program without
PRS. However, Taut performs significantly worse than under our original super-
compiler strategy. Across all our test programs, this strategy gives an average
performance boost of 40%.

8.2 Compared to without Supercompilation on a PRS-enabled
Platform

Table 2 gives another view on the impact of the supercompiler. It compares
the number of Reduceron combinators produced (size), time taken to execute
(cycles), number of case tables evaluated (cases) and the proportion of primitive
operations performed by PRS. These are recorded for pipeline f and shown as
multiples of the results for pipeline b, to the original program executed under
PRS.



170 Jason S. Reich, Matthew Naylor and Colin Runciman

Relative Primitives by PRS

Size Cycles Cases Original Residual Increase

Adjoxo 1.500 0.507 0.692 16.3% 87.0% +81.3%
Braun 2.526 0.769 0.810 99.2% 100.0% +0.8%
Chichelli 1.494 1.008 0.989 2.7% 2.6% -5.2%
Clausify 5.879 0.951 0.829 0.0% 94.0% + ∞
Fib 1.588 0.792 1.000 77.9% 77.9% 0.0%
KnuthBendix 2.508 0.866 0.855 63.8% 72.4% +11.8%
MSS 1.920 0.996 0.991 0.0% 0.0% -0.4%
Mate 2.423 0.954 0.918 54.8% 55.1% +0.6%
OrdList 3.887 0.678 0.771 0.0% 0.0% 0.0%
Parts 1.733 1.009 0.983 38.8% 56.0% +30.8%
PermSort 2.000 0.756 0.853 100.0% 41.8% -139.2%
Queens 2.535 0.773 0.988 99.5% 85.4% -16.5%
Queens2 2.068 0.966 0.947 4.0% 4.0% 0.0%
Sudoku 1.793 0.870 0.911 30.3% 56.1% +45.9%
Taut 2.057 0.856 0.718 0.0% 99.9% + ∞
While 3.030 1.062 0.989 60.2% 55.7% -8.1%
sumDouble 0.450 0.200 0.333 50.0% 100.0% +50.0%
sumSquares 0.900 0.378 0.494 66.2% 98.7% +32.9%
sumSumEnum 1.435 0.943 0.494 66.2% 66.9% +0.9%

Geometric Mean 1.936 0.759 0.790 7.3% 21.7%

Table 2. Various metrics for the benchmark programs. Relative values are
against the original program executed with PRS (pipeline b).

As would be expected, supercompilation can greatly increase the size of the
compiled program. There does not seem to be a relationship between relative
execution time performance and relative code size. A reduction in the number of
cases table evaluated would likely indicate that fusion has taken place, as fewer
data structures have been consumed.

In three cases, pipeline f still produces programs that perform worse than under
PRS alone (pipeline b). In comparison to the gains made by other programs,
these are only very small performance loses. The reason for these loses is cur-
rently unclear. Both for Chichelli and for While, the proportion of primitive
operations performed by PRS has actually fallen. It is currently unclear why
Parts performs worse when it has a large increase in the number of PRS candi-
dates and a small amount of fusion.

Despite these results, the current prototype of our supercompiler gives a geo-
metric mean speed-up of 24% for programs executed under PRS.



Supercompilation and the Reduceron 171

9 Conclusions and Future Work

The sumDouble example was chosen to demonstrate the benefits of both PRS and
supercompilation. However, we did not see the full magnitude of the combined
effect of the two technologies.

Other examples, such as Queens, did not benefit from supercompilation. This
led to the development of the primitive redex lifting strategy that has largely
permitted these examples to benefit from the same effects as sumDouble. This
strategy does not seem to produce benefits for all results. Further investigation
is required to discover why some results still do not improve and a small number
get worse.

Still, based on the evidence detailed in this paper, it would appear that PRS and
supercompilation can be synergistic, once certain primitive redexes are relocated
to maximise design constraints.

There is further scope to exploit the Reduceron design characteristics with the
supercompiler. A final inlining phase is required after supercompilation to re-
duce instantiations at run-time. The current method for selecting candidates for
inlining is simplistic. Further performance gains can be made by an improved
inlining strategy that considers the constraints on function bodies imposed by
the design parameters of the Reduceron.

Future designs of the Reduceron will also permit even more primitive redexes
to be speculatively evaluated in parallel. This will likely enable even further
performance gains from supercompilation targeted at the Reduceron platform.

Acknowledgements The first author would like to thank Michael Banks and
Chris Poskitt for their invaluable proof reading. Neil Mitchell is to be acknowl-
edged for his helpful discussions on the topic. Many thanks also go to Richard
Paige for his support and advice. This research was supported, in part, by the
EPSRC through the Large-Scale Complex IT Systems project, EP/F001096/1.

References

1. Turchin, V.: A supercompiler system based on the language Refal. ACM SIGPLAN
Notices 14(2) (1979) 46–54

2. Sørensen, M., Glück, R., Jones, N.: A positive supercompiler. Journal of Functional
Programming 6(06) (2008) 811–838

3. Naylor, M., Runciman, C.: The Reduceron: Widening the von Neumann bottle-
neck for graph reduction using an FPGA. In: Implementation and Application of
Functional Languages (IFL 2007, Revised Selected Papers), Springer LNCS 5083
(2008) 129–146

4. Naylor, M., Runciman, C.: The Reduceron Reconfigured. Available online at
http://www.cs.york.ac.uk/fp/reduceron/ (2010)



172 Jason S. Reich, Matthew Naylor and Colin Runciman

5. Naylor, M.: F-lite: a core subset of Haskell. Available online at http://www.cs.

york.ac.uk/fp/reduceron/memos/Memo9.txt (2008)
6. Peyton Jones, S.L., et al.: The Haskell 98 language and libraries: The revised

report. Journal of Functional Programming 13(1) (Jan 2003)
7. van Eekelen, M., Plasmeijer, R.: Concurrent Clean Language Report (version 2.0).

University of Nijmegen (2001)
8. Peyton Jones, S.L.: The Implementation of Functional Programming Languages

(Prentice-Hall International Series in Computer Science). Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA (1987)

9. Partain, W.: The nofib Benchmark Suite of Haskell Programs. In: Proceedings of
the 1992 Glasgow Workshop on Functional Programming, Springer-Verlag (1992)
202

10. Bird, R.: A program to solve Sudoku. Journal of Functional Programming 16(6)
(2006) 671

11. Nielson, H.R., Nielson, F.: Semantics with applications: a formal introduction.
John Wiley & Sons, Inc., New York, NY, USA (1992)

12. Mitchell, N., Runciman, C.: A supercompiler for core Haskell. In: IFL 2007. Volume
5083 of LNCS., Springer-Verlag (May 2008) 147–164


